
Word Embeddings

ECE324, Winter 2023

Michael GuerzhoySlides from Chris Manning

Word representations

• Want to represent input words to ML models

• Want similar words to have similar representations
• A lot of the time, want similar outputs from the model

when the inputs are similar

• Want dimensionality to be small

• One-hot encodings don’t represent relationships
between words

2

Representing words by their
context
• Distributional hypothesis in linguistics: a word’s

meaning is related to what words appear close-by
to the word

• When a word w appears in a text, its context is the
set of words that appear nearby

• Use the context of w to build up a representation
of w

3

Word vectors

• Each word is represented by an n-dimensional
vector

4

Similarity of vectors

• The cosine of the angle between vectors 𝑢 and 𝑣 is
cos 𝜃𝑢,𝑣 =

𝑢 ⋅𝑣

𝑢 |𝑣|

• Easier to use 𝑢 ⋅ 𝑣
• Related to the angle if 𝑢 and 𝑣 have roughly the same

magnitude

5

6

Word2Vec

• Every word is represented by an n-dimensional
vector

• Go through each position t in the test
• Get pairs of center words c and context words o

• Compute P(o|c) as a function of the similarity of c and o

• Maximize the probability of the occurrence of
outside words given center words

7

8

P(o|c)

𝑃 𝑜 𝑐 =
exp(𝑢𝑜 ⋅ 𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤 ⋅ 𝑣𝑐)

• Larger similarity  larger probability

• Derivative expensive to compute: need to sum over
the entire vocabulary

(Maximizing P(o|c) is called “Continuous Bag of Words and maximizing P(c|a) is called “Skip-gram”)

9

• Likelihood:

𝐿 𝜃 = ෑ

𝑡=1

𝑇

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃(𝑤𝑡+𝑗|𝑤𝑡; 𝜃)

• Negative log-likelihood NLL:
𝐽 𝜃 = −

1

𝑇
log 𝐿 𝜃 = −

1

𝑇
σ𝑡=1

𝑇 σ−𝑚≤𝑗≤𝑚
𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡; 𝜃)

• Maximum likelihood Minimum NLL

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

(𝑢𝑡+𝑗 ⋅ 𝑣𝑡 − log ෍

𝑤∈𝑊

exp(𝑢𝑤 ⋅ 𝑣𝑡))

10

Negative sampling

• 𝐽 𝜃 = −
1

𝑇
σ𝑦=1

𝑇 𝐽𝑡(𝜃)

• 𝐽𝑡 𝜃 =
σ𝑜∈ 𝑡−𝑚,𝑡−1 ∪[𝑡+1,𝑡+𝑚] log 𝜎(𝑢𝑜 ⋅ 𝑣𝑡) + 𝐾𝐸𝑗~𝑃(𝑤) [log 𝜎(−𝑢𝑗 ⋅ 𝑣𝑡)]

• 𝐾𝐸𝑗~𝑃(𝑤)[log 𝜎(−𝑢𝑗 ⋅ 𝑣𝑐)] ≈ σ𝑘∈{𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑖𝑒𝑠} log 𝜎(−𝑢𝑘 ⋅ 𝑣𝑡)

• Maximize the probability that real outside word appears

• Minimize the probability that random words appear near centre words

11

GLoVe

• 𝑋𝑖𝑗: the number of co-occurrences of 𝑤𝑖 and 𝑤𝑗

• 𝐽 = σ𝑖,𝑗 𝑓(𝑋𝑖𝑗)(𝑢𝑖 ⋅ 𝑣𝑗 + 𝑏𝑖 + 𝑏′𝑗 − log 𝑋𝑖𝑗)2

12

GLoVe results

13

Vector analogies

14

15

16

GLoVe cost function

• 𝑋𝑖𝑗: the number of co-occurrences of 𝑤𝑖 and 𝑤𝑗

• 𝑋𝑖: the number of occurrences of 𝑤𝑖

• Want log P 𝑤𝑜𝑟𝑑𝑖|𝑤𝑜𝑟𝑑𝑗 ≈ log
𝑋𝑖𝑗

𝑋𝑖
≈ 𝑢𝑖 ⋅ 𝑣𝑗

• 𝑢𝑖 ⋅ 𝑣𝑗 ≈ log 𝑋𝑖𝑗 − log 𝑋𝑖

• Absorb log 𝑋𝑖 into the biases, make expression
symmetric

• Learn with least squares, don’t upweight cases with
large 𝑋𝑖𝑗 too much

• 𝐽 = σ𝑖,𝑗 𝑓(𝑋𝑖𝑗)(𝑢𝑖 ⋅ 𝑣𝑗 + 𝑏𝑖 + 𝑏′𝑗 − log 𝑋𝑖𝑗)2

17

GLoVe cost function

• Idea: ratios of co-occurrence probabilities can
encode meaning components

18

19

GLoVe intuition via probability
ratios
• Want the word vectors to encode information

about ratios of probabilities

𝐹 𝑢𝑖 − 𝑢𝑗 ⋅ 𝑣𝑘 ≈
𝑃 𝑖 𝑘

𝑃 𝑗 𝑘
≈

𝑋𝑖𝑘/𝑋𝑘

𝑋𝑗𝑘/𝑋𝑘

• Set 𝐹 = 𝑒𝑥𝑝

•
exp 𝑢𝑖⋅𝑣𝑘

exp 𝑢𝑗⋅𝑣𝑘
≈

𝑋𝑖𝑘/𝑋𝑘

𝑋𝑗𝑘/𝑋𝑘

• 𝑢𝑖 ⋅ 𝑣𝑘 ≈ log 𝑋𝑖𝑘 − log 𝑋𝑘

• Absorb log 𝑋𝑘, make expression symmetric to get
𝑢𝑖 ⋅ 𝑣𝑘 + 𝑏𝑖 + 𝑏𝑘

′ ≈ log 𝑋𝑖𝑘

20

	Slide 1: Word Embeddings
	Slide 2: Word representations
	Slide 3: Representing words by their context
	Slide 4: Word vectors
	Slide 5: Similarity of vectors
	Slide 6
	Slide 7: Word2Vec
	Slide 8
	Slide 9: P(o|c)
	Slide 10
	Slide 11: Negative sampling
	Slide 12: GLoVe
	Slide 13: GLoVe results
	Slide 14: Vector analogies
	Slide 15
	Slide 16
	Slide 17: GLoVe cost function
	Slide 18: GLoVe cost function
	Slide 19
	Slide 20: GLoVe intuition via probability ratios

