CSC 321 H1S Tutorial 3 (Backprop in RNN) (Last update: March 28, 2016) Winter 2016

def lossFun (inputs, targets, hprev):
inputs ,targets are both list of integers.
hprev is Hxl array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state
99999

xs, hs, ys, ps = {}7 {}7 {}7 {}

hs[—1] = np.copy (hprev)

loss =0

forward pass

for t in xrange(len (inputs)):
xs[t] = np.zeros((vocab_size ,1)) # encode in l—of—k representation

] =1

hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t—1]) + bh) # hidden state

ys[t] = np.dot (Why, hs[t]) + by # unnormalized log probabilities for next chars

] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars

loss += —np.log(ps[t][targets[t],0]) # softmax (cross—entropy loss)

backward pass: compute gradients going backwards

dWxh, dWhh, dWhy = np.zeros_like (Wxh), np.zeros_like (Whh), np.zeros_like (Why)

dbh, dby = np.zeros_like(bh), np.zeros_like (by)

dhnext = np.zeros_like (hs[0])

for t in reversed (xrange(len(inputs))):

dy = np.copy(ps[t])

dy[targets[t]] —= 1 # backprop into y

dWhy += np.dot(dy, hs[t].T)

dby 4= dy

dh = np.dot(Why.T, dy) + dhnext # backprop into h

dhraw = (1 — hs[t] * hs[t]) * dh # backprop through tanh nonlinearity

dbh += dhraw
dWxh += np.dot (dhraw, xs[t].T)

dWhh += np.dot (dhraw, hs[t—1].T)
dhnext = np.dot (Whh.T, dhraw)
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
np.clip (dparam, —5, 5, out=dparam) # clip to mitigate exploding gradients

return loss , dWxh, dWhh, dWhy, dbh, dby, hs[len (inputs)—1]

Dept. of Computer Science, University of Toronto Page 1 of 1

