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Unsupervised Learning

• Instead of having inputs and target outputs, we just 
have the inputs

• The goal is to learn something useful about the 
data
• E.g., want to discover useful features of the data

• Want to obtain the same kind of features we obtained when 
training e.g. AlexNet, but without having to supply labels for 
images

• This is useful! Labelling images is difficult and expensive, and 
features can be useful for classification when there is not a lot 
of training data



Unsupervised Learning

• Find weights W s.t. 𝑃𝑊(𝑥) is high when x looks like 
the data in the training set, but 𝑃𝑊(𝑥) is low if x 
looks differently from the data in the training set

• 𝑃𝑊(𝑥) is the “probability of x”
• How likely are we to observe x as a new training sample?

• In RBMs, we also use “hidden” variables h

• We imagine each sample in the training set consists 
of visible input x, and some hidden inputs h

• 𝑃𝑊 𝑥 = σℎ′𝑃𝑊(𝑥, ℎ
′)



Restricted Boltzmann Machine (RBM)
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RBM weights as features

• 𝐸 𝑥, ℎ = −ℎ𝑇𝑊𝑥 − 𝑐𝑇𝑥 − 𝑏𝑇ℎ
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• High probability => low Energy Function (E)

• Consider 𝑊𝑗,:

• The Energy Function is lower if 𝑊𝑗,𝑘 is large when 
𝑥𝑘 is large, if ℎ𝑗 = 1

• So 𝑊𝑗,: could be a template for 𝑥



RBM weights as features

• 𝑊𝑗,: could be a template for 𝑥

• But that’s only useful when ℎ𝑗 is on (i.e., = 1)

• So 𝑃 𝑥, ℎ will be high when
• ℎ𝑗 = 1 for a j that’s appropriate for the x

• Think: x is in class j

• The weights are such that 𝑊𝑗,: is a template for x’s of 
class j

• If the weights are good, 𝑃(𝑥) will be high too, since 
one of the terms in 𝑃 𝑥 = σℎ′𝑃(𝑥, ℎ

′) will be 
large



A view of the training set

• 𝑥(𝑖) = {1, 0, 1, 1, … , 1} : observed. E.g., binarized
image

• ℎ(𝑖)=?  (Unobserved.). Also a binary vector. We 
don’t know what it is. 
• For example, a first coordinate equal to 1 might mean 

the sample represents the digit “0”

• It would be easy to assign probability if we knew 
the state of the hidden units

• The hidden layer makes it possible to assign 
reasonable probabilities using a relatively simple 
architecture



Computing 𝑃 𝑥 directly is hard

• 𝑃 𝑥, ℎ =
exp −𝐸 𝑥,ℎ

𝑍
, 𝑍 = σ(𝑥′,ℎ′) exp(−𝐸(𝑥

′, ℎ′))

• (Note: before we just looked at the Energy Function 
(denominator), but that was just for intuition)

• Even computing P(x) is hard. Maximizing it with respect to 
W is also hard

2dim 𝑥 +dim(ℎ) terms! Even 
computing this directly is hard



Gibbs Sampling

• It turns out that it’s possible to compute 𝑃 ℎ 𝑥
and 𝑃(𝑥|ℎ) easily. (I.e., if we know the visible units, 
it’s easy to compute the probability distribution for 
the hidden units, and vice-versa)

• 𝑃 ℎ 𝑥 = ς𝑗 𝑃 ℎ𝑗 𝑥 , 𝑃 ℎ𝑗 = 1 𝑥 = 𝜎(𝑏𝑗 +𝑊𝑗,:𝑥)

• 𝑃 𝑥 ℎ = ς𝑗 𝑃 𝑥𝑗 ℎ , 𝑃 𝑥𝑗 = 1 ℎ = 𝜎(𝑐𝑗 +𝑊𝑗,:
𝑇ℎ)



Proof

• 𝑃 ℎ𝑗 = 1 𝑥 =
𝑃(ℎ𝑗=1,𝑥)

𝑃(𝑥)

=
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𝑃 ℎ𝑗 = 0, 𝑥 + 𝑃 ℎ𝑗 = 1, 𝑥

=
1

1 + 𝑃 ℎ𝑗 = 0, 𝑥 /𝑃(ℎ𝑗 = 1, 𝑥)

•
𝑃 ℎ𝑗=0,𝑥

𝑃 ℎ𝑗=1,𝑥
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Proof (cont’d, first two lines important)



Gibbs Sampling for RBM (known 
weights)
• Initialize the x

• Sample the h given the x (Easy! We worked out the 
distribution)

• Sample the x given the h (Easy!)

• Repeat

• This allows us to see what kind of data the RBM is 
modelling (i.e., assigning high probability to)



Sampling from an RBM
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If we wait long enough, the visible samples will be sampled according to the 
probability distribution of the RBM, since we are performing Gibbs sampling


