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Motivation

• What to estimate σ𝑊′𝑛𝑒𝑡𝑊′ 𝑥 𝑃(𝑊′|𝑑𝑎𝑡𝑎)

• Strategy: pick W’ randomly according to 
P(W’|data), and average all the 𝑛𝑒𝑡𝑊′ 𝑥 we get

• Sampling W’ according to P(W’|data) is hard!
• For most W’, 𝑃(𝑊′|𝑑𝑎𝑡𝑎) is basically equal to 0

• Hard to find the W’ for which 𝑃(𝑊′|𝑑𝑎𝑡𝑎) is not equal 
to 0
• Those are the W’ we should pick!



Metropolis Algorithm

• Goal: obtain samples from 𝑃(𝜃)
• I.e., obtain 𝜃 𝑠+1 , 𝜃(𝑠+2), … . , 𝜃(𝑠+𝑚) that are distributed according 

to 𝑃 𝜃

Metropolis Algorithm
• 𝜃′~𝑞(𝜃′; 𝜃 𝑠 ) (Obtain a proposed 𝜃′)

• Simplest q: normal distribution around 𝜃 𝑠 . q must be symmetric: 
𝑞(𝜃′; 𝜃 𝑠 )=𝑞(𝜃(𝑠); 𝜃′)

• if accept:
• 𝜃(𝑠+1) ← 𝜃′

• else:
• 𝜃(𝑠+1) ← 𝜃(𝑠)

• With 𝑃𝑟𝑜𝑏 𝑎𝑐𝑐𝑒𝑝𝑡 = min 1,
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠

• 𝑃∗ 𝜃 ∝ 𝑃 𝜃
• For Neural Networks, this is proportional to 𝑃(𝑊|𝑑𝑎𝑡𝑎) -- can ignore the 

denominator



Metropolis Intuition

𝑃𝑟𝑜𝑏 𝑎𝑐𝑐𝑒𝑝𝑡 = min 1,
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠

• Tries to perturb 𝜃(𝑠) and see if the new 𝜃′ isn’t 

more likely                 
𝑃∗ 𝜃′

𝑃∗ 𝜃 𝑠 . If it is, accept. If it’s 

not, accept with a lower probability

• Makes sure that if 𝜃(𝑠) is sampled according to 
𝑃(𝜃), 𝜃(𝑠+1) is as well



Metropolis Intuition

• For large s (i.e., after many steps), 𝑃(𝜃(𝑠)) is likely 
large

• In fact 𝜃(𝑠+1), … , 𝜃(𝑠+𝑚) looks like it’s sampled 
according to 𝑃(𝜃(𝑠))

• The Metropolis Algorithm is an example of a Monet 
Carlo Markov Chain (MCMC) algorithm



Illustration

Adding the q is a 
generalization



Sampling weight vectors

• In standard backpropagation
we keep moving the weights in 
the direction that decreases 
the cost.
• i.e. the direction that 

increases the log 
likelihood plus the log 
prior, summed over all 
training cases.

• Eventually, the 
weights settle into a 
local minimum or get 
stuck on a plateau  or 
just move so slowly 
that we run out of 
patience.



One method for sampling weight vectors

• Suppose we add some 
Gaussian noise to the 
weight vector after each 
update.
• So the weight vector 

never settles down.
• It keeps wandering 

around, but it tends to 
prefer low cost regions of 
the weight space.

• Can we say anything 
about how often it will 
visit each possible 
setting of the weights? 



Gibbs Sampling

• Start with 𝜃(1)

• Step t:

• Sample 𝜃1
(𝑡+1)

~𝑃(𝜃1 |𝜃2
𝑡
, 𝜃3

𝑡
, … , 𝜃𝑛

𝑡
)

• Sample 𝜃2
(𝑡+1)

~𝑃 𝜃2 𝜃1
𝑡+1

, 𝜃3
𝑡
, … , 𝜃𝑛

𝑡

• …

• Sample 𝜃𝑛
(𝑡+1)

~𝑃 𝜃𝑛 𝜃1
𝑡+1

, 𝜃2
𝑡+1

, … , 𝜃𝑛−1
𝑡+1



Gibbs Sampling

• Again, can prove that eventually 𝜃(𝑠) will   looks like 
it was sampled according to P(𝜃)

• Requires being able to easily take samples from 

stuff like 𝑃 𝜃2 𝜃1
𝑡+1

, 𝜃3
𝑡
, … , 𝜃𝑛

𝑡


