
Improving Gradient Descent Learning
in Neural Networks

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Slides from Geoffrey Hinton

The Surface Error For Neural Networks

• The error surface lies in a space with a horizontal
axis for each weight and one vertical axis for the
error.

• For a linear neuron with a squared error, it is
a quadratic bowl.

• For multi-layer, non-linear nets the error surface
is much more complicated.

• But locally, a piece of a quadratic
bowl is usually a very good
approximation.

E

w1

w2

Convergence speed of full batch learning when
the error surface is a quadratic bowl

• Going downhill reduces the error, but the
direction of steepest descent does not point
at the minimum unless the ellipse is a circle.

• The gradient is big in the direction in
which we only want to travel a small
distance.

• The gradient is small in the direction in
which we want to travel a large distance.

Even for non-linear
multi-layer nets, the
error surface is locally
quadratic, so the same
speed issues apply.

How Learning Goes Wrong

• If the learning rate is big, the
weights slosh to and fro across the
ravine.
• If the learning rate is too big, this

oscillation diverges.

• What we would like to achieve:
• Move quickly in directions with small

but consistent gradients.
• Move slowly in directions with big but

inconsistent gradients.

E

w

Stochastic Gradient Descent

• If the dataset is highly redundant, the
gradient on the first half is almost
identical to the gradient on the second
half.
• So instead of computing the full

gradient, update the weights using
the gradient on the first half and
then get a gradient for the new
weights on the second half.

• The extreme version of this
approach updates weights after
each case. Its called “online”.

• Mini-batches are usually better
than online.

• Less computation is used
updating the weights.

• Computing the gradient for
many cases simultaneously
uses matrix-matrix
multiplies which are very
efficient, especially on GPUs

• Mini-batches need to
be balanced for classes

Two Types of Learning Algorithm

If we use the full gradient computed from all
the training cases, there are many clever ways
to speed up learning (e.g. non-linear conjugate
gradient).

• The optimization community has
studied the general problem of
optimizing smooth non-linear functions
for many years.

• Multilayer neural nets are not
typical of the problems they study
so their methods may need a lot
of adaptation.

For large neural networks with
very large and highly redundant
training sets, it is nearly always
best to use mini-batch learning.

• The mini-batches may
need to be quite big
when adapting fancy
methods.

• Big mini-batches are
more
computationally
efficient.

A Basic Mini-Batch Gradient Descent Algorithm

• Guess an initial learning rate.
• If the error keeps getting worse

or oscillates wildly, reduce the
learning rate.

• If the error is falling fairly
consistently but slowly, increase
the learning rate.

• Write a simple program to
automate this way of
adjusting the learning rate.

• Towards the end of mini-batch
learning it nearly always helps to turn
down the learning rate.

• This removes fluctuations in the
final weights caused by the
variations between mini-batches.

• Turn down the learning rate when
the error stops decreasing.

• Use the error on a separate
validation set

Careful about turning down the
learning rate

• Turning down the
learning rate reduces
the random fluctuations
in the error due to the
different gradients on
different mini-batches.
• So we get a quick win.
• But then we get slower

learning.

• Don’t turn down the
learning rate too soon!

er
ro

r

epoch

reduce
learning rate

Initializing the Weights

• If two hidden units have
exactly the same bias and
exactly the same incoming
and outgoing weights,
they will always get exactly
the same gradient.
• So they can never learn to

be different features.
• We break symmetry by

initializing the weights to
have small random values.

• If a hidden unit has a big fan-
in, small changes on many of
its incoming weights can
cause the learning to
overshoot.
• We generally want smaller

incoming weights when the
fan-in is big, so initialize the
weights to be proportional to
sqrt(fan-in).

• We can also scale the
learning rate the same way.

Shifting the Inputs

• When using steepest descent, shifting the input
values makes a big difference.
• It usually helps to transform each component of the

input vector so that it has zero mean over the whole
training set.

• The tanh activation (which is 2*logistic -1) produces
hidden activations that are roughly zero mean.
• In this respect its better than the logistic.

w1 w2

101, 101  2
101, 99  0

gives error
surface

1, 1  2
1, -1  0

gives error
surface

color indicates
training case

Scaling the Inputs

• When using steepest
descent, scaling the
input values makes a
big difference.
• It usually helps to

transform each
component of the
input vector so that it
has unit variance over
the whole training set.

w1 w2

1, 1 2
1, -1  0

0.1, 10  2
0.1, -10  0

gives error
surface

gives error
surface

color indicates
weight axis

Common Problems

• If we start with a very big learning rate, the weights of
each hidden unit will all become very big and positive
or very big and negative.
• The error derivatives for the hidden units will all become tiny

and the error will not decrease.
• This is usually a plateau, but people often mistake it for a

local minimum.

• In classification networks that use a squared error or a
cross-entropy error, the best guessing strategy is to
make each output unit always produce an output equal
to the proportion of time it should be a 1.
• The network finds this strategy quickly and may take a long

time to improve on it by making use of the input.
• This is another plateau that looks like a local minimum.

Speeding Up Learning

• Use “momentum”

• Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

• Use separate adaptive learning rates for each parameter

• Slowly adjust the rate using the consistency of the gradient for that
parameter.

• rmsprop: Divide the learning rate for a weight by a running average
of the magnitudes of recent gradients for that weight.

• This is the mini-batch version of just using the sign of the
gradient.

Momentum Method
Imagine a ball on the error
surface. The location of the
ball in the horizontal plane
represents the weight vector.
• The ball starts off by following

the gradient, but once it has
velocity, it no longer does
steepest descent.

• Its momentum makes it keep
going in the previous direction.

• It damps oscillations in directions of
high curvature by combining
gradients with opposite signs.

• It builds up speed in directions with
a gentle but consistent gradient.

Momentum Method

The effect of the gradient is to
increment the previous velocity. The
velocity also decays by a which is
slightly less then 1.

The weight change is equal to the current
velocity.

The weight change can be expressed in
terms of the previous weight change and
the current gradient.

𝑣 𝑡 = 𝛼𝑣 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤

Δ𝑤 𝑡 = 𝑣(𝑡)

= 𝛼𝑣 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤
(𝑡)

= 𝛼Δ𝑤(𝑡 − 1) − 𝜂
𝜕𝐸

𝜕𝑤
(𝑡)

Momentum Method

• If the error surface is a tilted
plane, the ball reaches a terminal
velocity.

• If the momentum is close to 1,
this is much faster than simple
gradient descent.

• At the beginning of learning there may
be very large gradients.
• So it pays to use a small

momentum (e.g. 0.5).
• Once the large gradients have

disappeared and the weights are
stuck in a ravine the momentum
can be smoothly raised to its final
value (e.g. 0.9 or even 0.99)

• This allows us to learn at a
rate that would cause
divergent oscillations without
the momentum.

𝑣 ∞ =
1

1 − 𝛼
(−𝜂

𝜕𝐸

𝜕𝑤
)

Nesterov Momentum

• The standard momentum method
first computes the gradient at the
current location and then takes a big
jump in the direction of the updated
accumulated gradient.

• Ilya Sutskever (2012 unpublished)
suggested a new form of momentum
that often works better.

• Inspired by the Nesterov method
for optimizing convex functions.

• First make a big jump in the
direction of the previous
accumulated gradient.

• Then measure the gradient
where you end up and make a
correction.

• Its better to correct a
mistake after you have
made it!

Nesterov Momentum

• First make a big jump in the direction of the previous accumulated gradient.

• Then measure the gradient where you end up and make a correction.

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

Adaptive Learning Rates

• In a multilayer net, the appropriate
learning rates can vary widely between
weights:

• The magnitudes of the gradients are often very different for
different layers, especially if the initial weights are small.

• The fan-in of a unit determines the size of the “overshoot”
effects caused by simultaneously changing many of the
incoming weights of a unit to correct the same error.

• So use a global learning rate (set by hand)
multiplied by an appropriate local gain that
is determined empirically for each weight.

Gradients can get very
small in the early layers of
very deep nets.

The fan-in often varies
widely between layers.

Determining Individual Rates
• Start with a local gain of 1 for every weight.

• Increase the local gain if the gradient for that
weight does not change sign.

• Use small additive increases and
multiplicative decreases (for mini-batch)

• This ensures that big gains decay rapidly
when oscillations start.

• If the gradient is totally random the gain
will hover around 1 when we increase by
plus 𝛿 half the time and decrease by
times 1 − 𝛿 half the time.

Δ𝑤𝑖𝑗 = −𝜂𝑔𝑖𝑗
𝜕𝐸

𝜕𝑤𝑖𝑗

if
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡 − 1 > 0

𝑔𝑖𝑗 𝑡 = 𝑔𝑖𝑗 𝑡 − 1 + .05

else
𝑔𝑖𝑗 𝑡 = 𝑔𝑖𝑗 𝑡 − 1 ∗ .95

rmsprop

• Keep a moving average of the squared gradient for
each weight:

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡

= .9𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡 − 1 + .1
𝜕𝐸

𝜕𝑤
𝑡

2

• Divide the gradient by 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡

Dropout Regularization

• Consider a neural net with one
hidden layer.

• Each time we present a training
example, we randomly omit
each hidden unit with
probability 0.5.

• So we are randomly sampling
from 2𝐻 different architectures.
• All architectures share weights.

Dropout as a form of model
averaging
• We sample from 2𝐻 models. So only a few of the

models ever get trained, and they only get one
training example.

• The sharing of the weights means that every model
is very strongly constrained
• The weights must work for all the models that use them

• This regularizes the weights and prevents overfitting

Dropout at test time

• Use all of the hidden units, but to halve their
outgoing weights.
• This exactly computes the geometric mean of the

predictions of all 2𝐻 models for a single-layer network

• Could also average some of the 2𝐻 models

