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The Surface Error For Neural Networks

• The error surface lies in a space with a horizontal 
axis for each weight and one vertical axis for the 
error. 

• For a linear neuron with a squared error, it is 
a quadratic bowl. 

• For multi-layer, non-linear nets the error surface 
is much more complicated.

• But locally, a piece of a quadratic 
bowl is usually a very good 
approximation.
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Convergence speed of full batch learning when 
the error surface is a quadratic bowl

• Going downhill reduces the error, but the 
direction of steepest descent does not point 
at the minimum unless the ellipse is a circle.

• The gradient is big in the direction in 
which we only want to travel a small 
distance. 

• The gradient is small in the direction in 
which we want to travel a large distance.

Even for non-linear 
multi-layer nets, the 
error surface is locally 
quadratic, so the same 
speed issues apply.



How Learning Goes Wrong

• If the learning rate is big, the 
weights slosh to and fro across the 
ravine. 
• If the learning rate is too big, this 

oscillation diverges.

• What we would like to achieve:
• Move quickly in directions with small 

but consistent gradients.
• Move slowly in directions with big but 

inconsistent gradients.

E

w



Stochastic Gradient Descent

• If the dataset is highly redundant, the 
gradient on the first half is almost 
identical to the gradient on the second 
half. 
• So instead of computing the full 

gradient, update the weights using 
the gradient on the first half and 
then get a gradient for the new 
weights on the second half.

• The extreme version of this 
approach updates weights after 
each case. Its called “online”.

• Mini-batches are usually better 
than online.

• Less computation is used 
updating the weights.

• Computing the gradient for 
many cases simultaneously 
uses matrix-matrix 
multiplies which are very 
efficient, especially on GPUs

• Mini-batches need to 
be balanced for classes



Two Types of Learning Algorithm

If we use the full gradient computed from all 
the training cases, there are many clever ways 
to speed up learning (e.g. non-linear conjugate 
gradient).

• The optimization community has 
studied the general problem of 
optimizing smooth non-linear functions 
for many years.

• Multilayer neural nets are not 
typical of the problems they study 
so their methods may need a lot 
of adaptation.

For large neural networks with 
very large and highly redundant 
training sets, it is nearly always 
best to use mini-batch learning.

• The mini-batches may 
need to be quite big 
when adapting fancy 
methods.

• Big mini-batches are 
more 
computationally 
efficient.  



A Basic Mini-Batch Gradient Descent Algorithm

• Guess an initial learning rate.
• If the error keeps getting worse 

or oscillates wildly, reduce the 
learning rate.

• If the error is falling fairly 
consistently but slowly, increase 
the learning rate. 

• Write a simple program to 
automate this way of 
adjusting the learning rate.

• Towards the end of mini-batch 
learning it nearly always helps to turn 
down the learning rate.

• This removes fluctuations in the 
final weights caused by the 
variations between mini-batches. 

• Turn down the learning rate when 
the error stops decreasing. 

• Use the error on a separate 
validation set



Careful about turning down the 
learning rate

• Turning down the 
learning rate reduces 
the random fluctuations 
in the error due to the 
different gradients on 
different mini-batches.
• So we get a quick win.
• But then we get slower 

learning.

• Don’t turn down the 
learning rate too soon!
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Initializing the Weights

• If two hidden units have 
exactly the same bias and 
exactly the same incoming 
and outgoing weights, 
they will always get exactly 
the same gradient. 
• So they can never learn to 

be different features.
• We break symmetry by 

initializing the weights to 
have small random values.

• If a hidden unit has a big fan-
in, small changes on many of 
its incoming weights can 
cause the learning to 
overshoot.
• We generally want smaller 

incoming weights when the 
fan-in is big, so initialize the 
weights to be proportional to 
sqrt(fan-in).

• We can also scale the 
learning rate the same way.



Shifting the Inputs

• When using steepest descent, shifting  the input 
values makes a big difference.
• It usually helps to transform each component of the 

input vector so that it has zero mean over the whole 
training set. 

• The tanh activation (which is 2*logistic -1) produces 
hidden activations that are roughly zero mean. 
• In this respect its better than the logistic. 
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Scaling the Inputs

• When using steepest 
descent, scaling  the 
input values makes a 
big difference.
• It usually helps to 

transform each 
component of the 
input vector so that it 
has unit variance over 
the whole training set. 
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Common Problems

• If we start with a very big learning rate, the weights of 
each hidden unit will all become very big and positive 
or very big and negative.
• The error derivatives for the hidden units will all become tiny 

and the error will not decrease.
• This is usually a plateau, but people often mistake it for a 

local minimum.

• In  classification networks that use a squared error or a 
cross-entropy error, the best guessing strategy is to 
make each output unit always produce an output equal 
to the proportion of time it should be a 1. 
• The network finds this strategy quickly and may take a long 

time to improve on it by making use of the input. 
• This is another plateau that looks like a local minimum. 



Speeding Up Learning

• Use “momentum”

• Instead of using the gradient to change the position of the weight 
“particle”, use it to change the velocity. 

• Use separate adaptive learning rates for each parameter

• Slowly adjust the rate using the consistency of the gradient for that 
parameter.

• rmsprop: Divide the learning rate for a weight by a running average 
of the magnitudes of recent gradients for that weight.

• This is the mini-batch version of just using the sign of the 
gradient. 



Momentum Method
Imagine a ball on the error 
surface. The location of the 
ball in the horizontal plane 
represents the weight vector.
• The ball starts off by following 

the gradient, but once it has 
velocity, it no longer does 
steepest descent. 

• Its momentum makes it keep 
going in the previous direction.

• It damps oscillations in directions of 
high curvature by combining 
gradients with opposite signs.

• It builds up speed in directions with 
a gentle but consistent gradient.



Momentum Method

The effect of the gradient is to 
increment the previous velocity. The 
velocity also decays by  a which is 
slightly less then 1.

The weight change is equal to the current 
velocity. 

The weight change can be expressed in 
terms of the previous weight change and 
the current gradient. 

𝑣 𝑡 = 𝛼𝑣 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤

Δ𝑤 𝑡 = 𝑣(𝑡)

= 𝛼𝑣 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤
(𝑡)

= 𝛼Δ𝑤(𝑡 − 1) − 𝜂
𝜕𝐸

𝜕𝑤
(𝑡)



Momentum Method

• If the error surface is a tilted 
plane, the ball reaches a terminal 
velocity.

• If the momentum is close to 1, 
this is much faster than simple 
gradient descent.

• At the beginning of learning there may 
be very large gradients. 
• So it pays to use a small 

momentum (e.g. 0.5).
• Once the large gradients have 

disappeared and the weights are 
stuck in a ravine the momentum 
can be smoothly raised to its final 
value (e.g. 0.9 or even 0.99)

• This allows us to learn at a 
rate that would cause 
divergent oscillations without 
the momentum.

𝑣 ∞ =
1

1 − 𝛼
(−𝜂

𝜕𝐸

𝜕𝑤
)



Nesterov Momentum

• The standard momentum method 
first computes the gradient at the 
current location and then takes a big 
jump in the direction of the updated 
accumulated gradient.

• Ilya Sutskever (2012 unpublished) 
suggested a new form of momentum 
that often works better.

• Inspired by the Nesterov method 
for optimizing convex functions. 

• First make a big jump in the 
direction of the previous 
accumulated gradient.

• Then measure the gradient 
where you end up and make a 
correction.

• Its better to correct a 
mistake after you have 
made it!



Nesterov Momentum

• First make a big jump in the direction of the previous accumulated gradient.

• Then measure the gradient where you end up and make a correction.

brown vector = jump,       red vector = correction,       green vector = accumulated gradient

blue vectors = standard momentum



Adaptive Learning Rates

• In a multilayer net, the appropriate 
learning rates can vary widely between 
weights:

• The magnitudes of the gradients are often very different for 
different layers, especially if the initial weights are small.

• The fan-in of a unit determines the size of the “overshoot” 
effects caused by simultaneously changing many of the 
incoming weights of a unit to correct the same error.

• So use a global learning rate (set by hand) 
multiplied by an appropriate local gain that 
is determined empirically for each weight. 

Gradients can get very 
small in the early layers of 
very  deep nets.

The fan-in often varies 
widely between layers.



Determining Individual Rates
• Start with a local gain of 1 for every weight. 

• Increase the local gain if the gradient for that 
weight does not change sign.

• Use small additive increases and 
multiplicative decreases (for mini-batch)

• This ensures that big gains decay rapidly 
when oscillations start.

• If the gradient is totally random the gain 
will hover around 1 when we increase  by 
plus 𝛿 half the time and decrease by 
times 1 − 𝛿 half the time.

Δ𝑤𝑖𝑗 = −𝜂𝑔𝑖𝑗
𝜕𝐸

𝜕𝑤𝑖𝑗

if 
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡 − 1 > 0

𝑔𝑖𝑗 𝑡 = 𝑔𝑖𝑗 𝑡 − 1 + .05

else
𝑔𝑖𝑗 𝑡 = 𝑔𝑖𝑗 𝑡 − 1 ∗ .95



rmsprop

• Keep a moving average of the squared gradient for 
each weight:

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡

= .9𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡 − 1 + .1
𝜕𝐸

𝜕𝑤
𝑡
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• Divide the gradient by 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒 𝑤, 𝑡



Dropout Regularization

• Consider a neural net with one 
hidden layer.

• Each time we present a training 
example, we randomly omit 
each hidden unit with 
probability 0.5.

• So we are randomly sampling 
from 2𝐻 different architectures.
• All architectures share weights.



Dropout as a form of model 
averaging
• We sample from 2𝐻 models. So only a few of the 

models ever get trained, and they only get one 
training example.

• The sharing of the weights means that every model 
is very strongly constrained
• The weights must work for all the models that use them

• This regularizes the weights and prevents overfitting



Dropout at test time

• Use all of the hidden units, but to halve their 
outgoing weights.
• This exactly computes the geometric mean of the 

predictions of all 2𝐻 models for a single-layer network

• Could also average some of the 2𝐻 models


