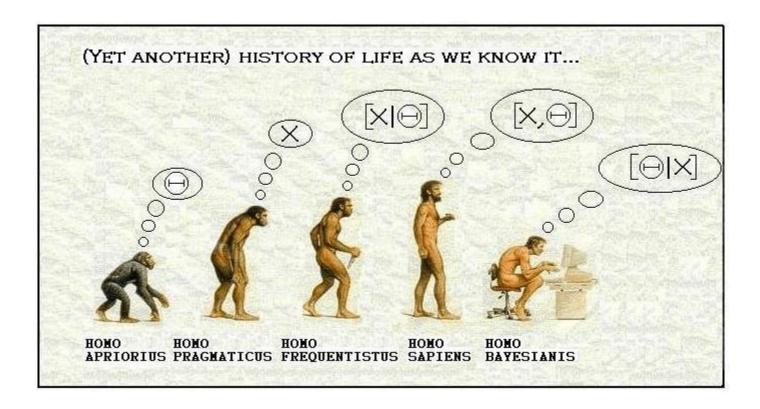
Bayesian Inference and an Intro to Monte Carlo Methods



Reminder: Bayesian Inference

- Model: $y_i = h_{\theta}(x_i)$
- Data: $\{(x_1, y_1), (x_2, y_2), ... (x_m, y_m)\}$
- Want: $P(\theta|data)$
 - I.e., we want the probability/degree of belief for every value of the parameter θ
 - E.g., the probability for a certain set of weights+biases of a neural network
 - For linear regression, the probability that $(a = a_0, b = b_0)$ for $h_{(a,b)}(x) = ax + b$, given the data that we observe

Use Bayes' Rule

•
$$P(\theta|data) = \frac{P(data,\theta)}{P(data)} = \frac{P(data|\theta)P(\theta)}{\sum_{\theta'} P(data|\theta')P(\theta')}$$

- $-\log P(\theta|data) = -\log(P(data|\theta)) \log(P(\theta)) + const$
 - $-\log P(data|\theta)$: can be thought of as the cost function without the penalty. The lower $-\log P(data|\theta)$, the higher $P(data|\theta)$, so the better the data fit the model with the parameter θ
 - $-\log P(\theta)$ can be thought of as the weight penalty
 - If we minize $-\log P(\theta|data)$, we can find the "best" parameters for the data

Full Bayesian Inference

- Instead of maximizing $P(\theta|data)$, simply compute it for every possible value of θ
- In a sense, this will give us the best possible information about what the "true" θ might be
 - The "true" θ is the θ that is used to generate the training set. E.g.:
 - $y = \theta_0 + \theta_1 x + 0.1 N(0,1)$ for some specific values of θ_0 and θ_1 that we don't know
- What happens to $P(\theta)$ as the training set gets larger?

Neural Network Example

- $P(y^{(i)}, x^{(i)}|W) = Gaussian_{\sigma_y^2}(net_W(x^{(i)}) y^{(i)})$
 - I.e., $y^{(i)} = net_W(x^{(i)}) + N(0, \sigma^2)$
 - I.e., the observed output of the network is what the network computes using the weights W, plus some Gaussian noise
- $P(W) = \prod_{j} Gaussian_{\sigma_{W}^{2}}(W_{j})$ (or = const)
 - I.e., we believe W's that are closer to the 0 more (or we believe all weights equally)

Neural Network Example: Inference

- Can now compute P(W|data) for any set of weights W
- Can compute $net_W(x)$ for any W
- For an input x, compute

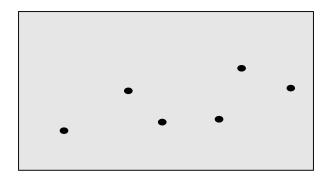
$$E_{data}[net_{W}(x)] = \sum_{W'} net_{W'}(x)P(W'|data)$$

 I.e., compute the weighted average of the predictions for all the possible W', weighting by how plausible the W' is

"All the possible W's"?

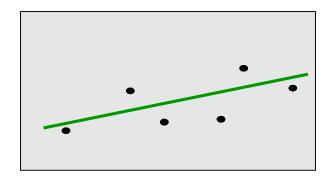
- W is a set of weights (real numbers)
- Can't compute the probability for all the possible W's
- Instead allow each W_j to have a finite set of values (e.g., [-10.0, -9.9, -9.8, 9.8, 9.9, 10.0]), and compute the probabilities for all the possible discretized W's
- For 30 weights, the above would still be 200^{30} computations!
 - Not really practical except for very small networks.

Why bother?



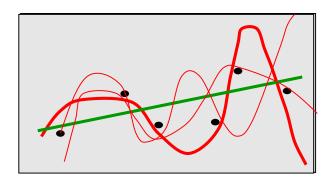
 We happen to believe that the data was generate by a degree 5 polynomial (+noise)

Why bother?



 Fitting a single polynomial would overfit horribly: much better to just fit a straight line

Why bother?



 Fitting multiple polynomials and averaging would do the trick: no overfitting on the one hand, and no underfitting (because the data doesn't *really* lie a long a straight line) on the other

How to make it practical?

$$\sum_{W'} net_{W'}(x) P(W'|data)$$

- Instead of computing this weighted sum for all W', only compute it for some W'
- Pick the W' uniformly at random
- Or: pick the W' according to P(W'|data), and compute the average $net_{W'}(x)$ that we get

Monte Carlo Methods

- Picking the possible parameters (e.g. W') and computing some functions of them (e.g. $net_{W'}(x)$) and then computing the averageto estimate the true value (e.g., $net_{W}(x)$ for the true W) is known as a Monte Carlo method
 - After the casino in Monaco

Enrico Fermi and Insomnia

 "Enrico Fermi (1901–1954) took great delight in astonishing his colleagues with his remarkably accurate predictions of experimental results. his "guesses" were really derived from the statistical sampling techniques that he used to calculate with whenever insomnia struck!"

—The beginning of the Monte Carlo method, N. Metropolis

