Learning in Recurrent Neural Networks, Part 2

Andrey Karpathy http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Some slides from Richard Socher, Geoffrey Hinton, Andrej Karpathy

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016
Michael Guerzhoy
Generic RNN

- x_t - the t^{th} character of the string (“the character at time t”)
- h_t - the hidden state at time t
x_t - the input (one-hot) at t
\hat{y}_t - predictions (vector of probs) at t

\[h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t) \]
\[\hat{y}_t = \text{softmax}(W^{(s)}h_t) \]
\[\hat{P}(x_{t+1} = v_j | x_1, x_2, ..., x_t) = \hat{y}_{t,j} \]
An RNN for strings with valid parentheses

• Valid parens: (())((())), (()())
• Invalid parens:)(
• Algorithm for recognizing strings w/ valid parents:
 • For all t,
 (#open parens up to t) - (#closed parens up to t) >= 0
#open parens up to t) - (#closed parens up to t) >= 0

- $x_t^0 = 1$: $s[t]=="("$
- $x_t^1 = 1$: $s[t]==")"$
- $x_t^2 = 1$: $s[t]=="\n"
- h_t: (#open parens) – (#closed parens)

$h_t = [1 \quad -1] \begin{bmatrix} x_t^0 \\ x_t^1 \end{bmatrix} + [1]h_{t-1}$

$\hat{y}_t \approx \begin{cases} [.2, .8, 0]^T, & h_t > 0 \\ [0, 0, 1]^T, & h_t < 0 \\ [.5, 0, .5]^T, & h_t \approx 0 \end{cases}$

Not doable with a one-layer network, but doable with a two layer network

(Note: really doable with one-layer networks too (approximately), but with a larger h – discussion on the board)
RNN Gradient

\[\frac{\partial J}{\partial W} = \sum_t \frac{\partial J^{(t)}}{\partial W} \]

\[\frac{\partial J^{(t)}}{\partial W} = \sum_{k=1}^{t} \frac{\partial J^{(t)}}{\partial h_k} \frac{\partial h_k}{\partial W} = \sum_{k=1}^{t} \frac{\partial J^{(t)}}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W} \]

\[\hat{y}_t = h_t \]
Vanishing Gradient

\[
\frac{\partial J^{(t)}}{\partial W} = \sum_{k=1}^{t} \frac{\partial J^{(t)}}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial W} = \sum_{k=1}^{t} \frac{\partial J^{(t)}}{\partial h_t} \frac{\partial h_t}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial h_k} \frac{\partial h_k}{\partial W}
\]

\[
\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}}
\]

Problem:
- \(|\frac{\partial h_j}{\partial h_{j-1}}| < 1\) for all j
- Leads to \(\frac{\partial h_t}{\partial h_k}\) being very small