Learning Long-Term Dependencies with RNN

Some slides from Richard Socher, Geoffrey Hinton, Andrej Karpathy

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016
Michael Guerzhoy
Gated Recurrent Units (GRU)

• Instead of $h_t = \tanh(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$ do
 • Update gate: $z_t = \sigma(W^{(z)}x_t + U^{(z)}h_{t-1})$
 • Reset gate: $r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$
 • New memory: $\tilde{h}_t = \tanh(W^{(hx)}x_t + r \circ W^{(hh)}h_{t-1})$
 • Final memory: $h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$

• If update gate is around 0, previous memory is ignored, and only new information is stored

• The reset gate controls whether the input or the previous state determines the current state
GRU

\[
\begin{align*}
 z_t &= \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right) \\
 r_t &= \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right) \\
 \tilde{h}_t &= \tanh \left(W x_t + r_t \circ U h_{t-1} \right) \\
 h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t
\end{align*}
\]
GRU intuition

- If reset is close to 0, ignore previous hidden state
 - Allows model to drop information that is irrelevant in the future
- Update gate z controls how much the past state should matter now
- Units with short-term dependencies will have active reset gates r
- Units with long term dependencies have active update gates z

\[
\begin{align*}
 z_t &= \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right) \\
 r_t &= \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right) \\
 \tilde{h}_t &= \tanh \left(W x_t + r_t \circ U h_{t-1} \right) \\
 h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t
\end{align*}
\]
Why do GRUs help with the vanishing gradient problem?

• We had:
 \[
 \frac{\partial J(t)}{\partial W} = \sum_{k=1}^{t} \frac{\partial J(t)}{\partial y_t} \frac{\partial y_t}{\partial W} = \sum_{k=1}^{t} \frac{\partial J(t)}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}
 \]
 \[
 \frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} \leq a^{t-j-1}
 \]

• Now:
 \[
 \frac{\partial h_j}{\partial h_{j-1}} = z_j + (1 - z_j) \frac{\partial \tilde{h}_j}{\partial h_{j-1}}
 \]
 \[
 \frac{\partial h_j}{\partial h_{j-1}} \text{ is } 1 \text{ for } z_j = 1
 \]

\[
\begin{align*}
 z_t &= \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right) \\
 r_t &= \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right) \\
 \tilde{h}_t &= \tanh \left(W x_t + r_t \circ U h_{t-1} \right) \\
 h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t
 \end{align*}
\]
\[
\frac{\partial \tilde{h}_j}{\partial h_{j-1}} = \frac{\partial}{\partial h_{j-1}} \tanh(W x_j + r_j \circ U h_{j-1}) \\
= (1 - \tilde{h}_j^2)(r_j \circ U)
\]

\[
\frac{\partial h_j}{\partial h_{j-1}} = z_j + (1 - z_j) \frac{\partial \tilde{h}_j}{\partial h_{j-1}} \text{ is 1 for } z_j = 1
\]

\[
\frac{\partial h_j}{\partial h_{j-1}} = z_j + (1 - z_j) \frac{\partial \tilde{h}_j}{\partial h_{j-1}} \text{ is } z_j \text{ for } r_j = 0
\]

\[
z_t = \sigma \left(W(z) x_t + U(z) h_{t-1} \right)
\]

\[
r_t = \sigma \left(W(r) x_t + U(r) h_{t-1} \right)
\]

\[
\tilde{h}_t = \tanh(W x_t + r_t \circ U h_{t-1})
\]

\[
h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t
\]
“Shutting” the update gate lets us essentially “skip” layers when calculating the gradient. This ameliorates the vanishing, exploding gradient problem.
Long short-term memory (LSTM)

• A more complicated gate, same idea as GRU

• Input gate (current cell matters) \[i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right) \]

• Forget (gate 0, forget past) \[f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right) \]

• Output (how much cell is exposed) \[o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right) \]

• New memory cell \[\tilde{c}_t = \tanh \left(W^{(c)} x_t + U^{(c)} h_{t-1} \right) \]

Final memory cell: \[c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \]

Final hidden state: \[h_t = o_t \odot \tanh(c_t) \]

2 numbers (c_t and h_t) represent the state