
Understanding How ConvNets See

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Slides from Andrej Karpathy

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)



What Does a Neuron Do in a ConvNet? (1)

• A neuron in the first hidden layer computes a 
weighted sum of pixels in a patch of the image for 
which it is responsible

K. Fukushima, “Neurocognitron: A self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position” (Biol. 
Cybernetics 1980)



What Does a Neuron Do in a ConvNet? (2)

• For Neurons in the first hidden layer, we can 
visualize the weights.

Example weights for fully-
connected single-hidden layer 
network for faces, for one 
neuron

Weights for 9 features in the 
first convolutional layer of a 
layer for classifying ImageNet 
images

Zeiler and Fergus, “Visualizing and Understanding 
Convolutional Networks”



What Does a Neuron Do in a ConvNet? (3)

• The neuron would be activated the most if the 
input looks like the weight matrix

• These are called “Gabor-like filters”

• The colour is due to the input being 3D. We 
visualize the strength of the weight going from each 
of the R, G, and B components



What Does a Neuron Do in a ConvNet (4)

• Another to figuring out what kind of images active 
the neuron: just try lots of images in a dataset, and 
see which ones active the neuron the most

Zeiler and Fergus, “Visualizing and Understanding 
Convolutional Networks”

For each feature, fine the 9 
images that produce the highest 
activations for the neuron, and 
crop out the relevant patch



Aside: Relevant Patch?

• Each neuron is affected by some small patch in the 
layer below

• Can recursively figure out what patch in the input 
layer each neuron is affected

• Neurons in the top layers are affected by (almost) 
the entire image



This allows us to look at layers 
besides the first one: layer 3



Layer 4



Layer 5



Which Pixels in the Input Affect 
the Neuron the Most?
• Rephrased: which pixels would make the neuron 

not turn on if they had been different?

• In other words, for which inputs is
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕𝑥𝑖
large?



𝑥1 𝑥2 𝑥3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =෍

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =෍

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular 
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑥3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑥2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤



Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:



Typical Gradient of a Neuron

• Mostly zero away from the object,
but the results are not very satisfying

• Every pixel influences the neuron via
multiple hidden neurons. 
The network is trying to detect kittens everywhere, 
and the same pixel could fit a kitten in one location 
but not another, leading to its overall effect on the 
kitten neuron to be 0
(Explanation on the board)



“Guided Backpropagation”

• Idea: neurons act like detectors of particular image 
features

• We are only interested in what image features the 
neuron detects, not in what kind of stuff it doesn’t 
detect

• So when propagating the gradient, we set all the 
negative gradients to 0
• We don’t care if a pixel “suppresses” a neuron 

somewhere along the part to our neuron



𝑥1 𝑥2 𝑥3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =෍

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =෍

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular 
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑥3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑥2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤

set to 0 of negative

set to 0 of negative



Guided Backpropagation
Compute gradient, 
zero out negatives, 
backpropagate

Compute gradient, 
zero out negatives, 
backpropagate

Compute gradient, 
zero out negatives, 
backpropagate



Guided Backpropagation

Backprop Guided Backprop



Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)



What About Doing Gradient Descent?

• What to maximize the i-th output of the softmax
• Can compute the gradient of the i-th output of the 

softmax with respect to the input x (the W’s and b’s are 
fixed to make classification as good as possible)

• Perform gradient descent on the input



Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)







(A Small Tweak For the Gradient Descent Algorithm)

• Doing gradient descent can lead to things that 
don’t look like images at all, and yet maximize the 
output

• To keep images from looking like white noise, do 
the following:
• Update the image x using a gradient descent step

• Blur the image x


