Introduction to Convolutional Networks

[LeNet-5, LeCun 1980]
Computing Features

- Idea: each neuron on the higher layer is detecting the same feature, but in different locations on the lower layer
 - Detecting = the output is high if the feature is present
- It’s the same feature because the weights are the same
- Note: each neuron is only connected with non-zero weights to a small area in the input

The red connections all have the same weight.
Feature Detection

• The weights of each unit in the upper layer can be represented as a 2D array.

• To compute the input to each neuron in the upper layer, we are computing the dot product between the 2D array (called \textit{kernel}) and the area of the lower layer to which the neuron is connected (called the \textit{receptive field}).

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}
\]

3x3 weights array for a 3x3 area in the input

• The operation of computing the feature layer from the lower layer is called \textit{convolution} (technically, “cross-correlation,” but the differences between convolution and cross-correlation is unimportant here.)
Convolution Example: Sobel Filter

Vertical Edge (absolute value)
Convolution Example: Sobel Filter

Horizontal Edge (absolute value)
Convolution Example: Blob Detection

\[
\begin{pmatrix}
0 & 0 & 3 & 2 & 2 & 2 & 3 & 0 & 0 \\
0 & 2 & 3 & 5 & 5 & 5 & 3 & 2 & 0 \\
3 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 3 \\
2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\
2 & 5 & 0 & -23 & -40 & -23 & 0 & 5 & 2 \\
2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\
3 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 3 \\
0 & 2 & 3 & 5 & 5 & 5 & 3 & 2 & 0 \\
0 & 0 & 3 & 2 & 2 & 2 & 3 & 0 & 0 \\
\end{pmatrix}
\]

*
7x7 input (spatially) assume 3x3 filter
7x7 input (spatially)
assume 3x3 filter
7x7 input (spatially) assume 3x3 filter
7x7 input (spatially) assume 3x3 filter
7x7 input (spatially) assume 3x3 filter

=> 5x5 output
7x7 input (spatially) assume 3x3 filter applied with stride 2
7x7 input (spatially) assume 3x3 filter applied with stride 2
7x7 input (spatially)
assume 3x3 filter applied **with stride 2**
=> 3x3 output!
Output size:
\((N - F) / \text{stride} + 1\)

e.g. \(N = 7, F = 3\):

stride 1 \(\Rightarrow (7 - 3)/1 + 1 = 5\)

stride 2 \(\Rightarrow (7 - 3)/2 + 1 = 3\)

stride 3 \(\Rightarrow (7 - 3)/3 + 1 = 2.33 :\)
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with $(F-1)/2$. (will preserve size spatially)
e.g. $F = 3$ => zero pad with 1
 $F = 5$ => zero pad with 2
 $F = 7$ => zero pad with 3
Pooling Features ("subsampling")

- The job of complex cells
- **Max Pooling**
 - Is there a diagonal edge somewhere in an area of the image?
 - Take the maximum over the responses to the feature detector in the area
- **Average Pooling**
 - Is there a blobs pattern in an area of the image?
 - Take the average over the responses to the feature detectors in the area
- Max Pooling generally works better
Max Pooling as Hierarchical Invariance

• At each level of the hierarchy, we use an “or” to get features that are invariant across a bigger range of transformations.

• (Average Pooling is a little bit like an “AND”)

![Diagram showing hierarchical invariance with max pooling nodes connected by or operations.](image-url)
Putting it All Together

• Different types of layers: convolution and subsampling.
• Convolution layers compute features maps: the response to multiple feature detectors on a grid in the lower layer
• Subsampling layers pool the features from a lower layer into a smaller feature map
Why Convolutional Nets

• It’s possible to compute the same outputs in a fully connected neural network, but
 • The network is much harder to learn
 • There is more danger of overfitting if we try it with a really big network
 • A convolutional network has fewer parameters due to weight sharing*

• It makes sense to detect features and then combine them
 • That’s what the brain seems to be doing

* Small fully connected networks can work very well, but are hard to train
Learning Convolutional Nets: Replicated Weights

• \(v = g(Wu_1 + Wu_2) \)

\[
\frac{\partial v}{\partial W} = (u_1 + u_2)g'(Wu_1 + Wu_2) \\
= u_1g'(Wu_1 + Wu_2) + u_2g'(Wu_1 + Wu_2)
\]

• Note: if \(u_1 \) is positive but \(u_2 \) is negative, \(W \) will be “pulled” in different directions by the two
Learning Convolutional Nets: Max Pooling

\[
\frac{\partial v}{\partial u_i} = \begin{cases}
1, & u_i > u_j, \forall j \neq i \\
0, & \text{otherwise}
\end{cases}
\]

- The \(u \)'s are real, so let’s not worry about them being equal.
- The gradient only flows to the unit that’s responsible for the value of \(v \).
 - Makes sense! The other ones aren’t likely detecting any patterns.
LeNet:

[LeNet-5, LeCun 1980]
A Brute Force Approach

• Convolutional Networks use knowledge about invariances to design the network architecture/weight constraints

• But its much simpler to incorporate knowledge of invariances by just creating extra training data:
 • for each training image, produce new training data by applying all of the transformations we want to be insensitive to (Le Net can benefit from this too)
 • Then train a large, dumb net on a fast computer.
 • This works surprisingly well if the transformations are not too big