
Preventing Overfitting in Neural Networks

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

John Klossner, The New Yorker

Slides from Geoffrey Hinton

Overfitting

• The training data contains information about the regularities
in the mapping from input to output. But it also contains
noise
• The target values may be unreliable.
• There is sampling error. There will be accidental

regularities just because of the particular training cases
that were chosen.

• When we fit the model, it cannot tell which regularities are
real and which are caused by sampling error.
• So it fits both kinds of regularity.
• If the model is very flexible it can model the sampling

error really well. This is a disaster.

Preventing overfitting

• Use a model that has the right capacity:
• enough to model the true regularities

• not enough to also model the spurious regularities
(assuming they are weaker)

• Fitting curves in 2D:
• Only fit lines, not higher-degree polynomials

(example on the board)

• Only fit quadratics, not higher degree polynomials

Reminder: Nearest Neighbours

• More nearest-neighbours less capacity
• More complicated decision surfaces are not possible

Limiting the Capacity of a Neural Network

• Limit the number of hidden units.

• Limit the size of the weights.

• Stop the learning before it has time to overfit.

Weight Decay: Limiting the size of the weights

• Weight-decay involves adding
an extra term to the cost
function that penalizes the
squared weights.

• Keeps weights small unless
they have big error
derivatives.

w

C

𝑐𝑜𝑠𝑡𝑊𝐷 = 𝑐𝑜𝑠𝑡 +
𝜆

2

𝑖,𝑗,𝑘

(𝑊(𝑘,𝑖,𝑗))2

𝜕𝑐𝑜𝑠𝑡𝑊𝐷

𝜕𝑊(𝑘,𝑖,𝑗)
=
𝜕𝑐𝑜𝑠𝑡𝑊𝐷

𝜕𝑊(𝑘,𝑖,𝑗)
+ 𝜆𝑊(𝑘,𝑖,𝑗)

Other kinds of weight penalty

• Sometimes it works better to
penalize the absolute values of
the weights. (I.e., we penalized
the L1 norm of the weights rather
than the L2 norm)

• Sometimes leads to smaller test errors

• Makes some weights zero

• Compared to the square penalty,
which would not tend to do that

• This is sometimes helpful with
interpreting the features

0

w/2 w/2 w 0

Another kind of Weight penalty

• Sometimes it works better to use a weight penalty that
has negligible effect on large weights.
• Some weights need to be large for the neural network to work

correctly!

0

act = ['Gerard Butler', 'Daniel Radcliffe', 'Michael Vartan', 'Lorraine Bracco', 'Peri Gilpin', 'Angie Harmon']

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization

300 hidden units, 6 actors, 40 examples each, L1-penalized regularization

The effect of weight-decay

• It prevents the network from using weights that it does not
need (especially the L1 penalty).

• This can often improve generalization a lot.

• It helps to stop it from fitting the sampling error.

• It makes a smoother model in which the output changes
more slowly as the input changes. w

• For the L2 penalty, if the network has two very similar
inputs it prefers to put half the weight on each rather than
all the weight on one.

Deciding how much to restrict the capacity

• How do we decide which limit to use and how strong
to make the limit?
• If we use the test data we get an unfair prediction of the

error rate we would get on new test data.

• Suppose we compared a set of models that gave random
results, the best one on a particular dataset would do
better than chance. But it wont do better than chance on
another test set.

• So use a separate validation set to do model
selection.

Using a validation set

• Divide the total dataset into three subsets:
• Training data is used for learning the parameters of the

model.

• Validation data is not used of learning but is used for
deciding what type of model and what amount of
regularization works best.

• Test data is used to get a final, unbiased estimate of how
well the network works. We expect this estimate to be
worse than on the validation data.

• We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

Preventing overfitting by early
stopping
• If we have lots of data and a big model, its very

expensive to keep re-training it with different
amounts of weight decay.

• It is much cheaper to start with very small weights
and let them grow until the performance on the
validation set starts getting worse (but don’t get
fooled by noise!)

• The capacity of the model is limited because the
weights have not had time to grow big.

Why early stopping works

• When the weights are very small,
every hidden unit is in its linear
range.

• So a net with a large layer of
hidden units is linear.

• It has no more capacity than
a linear net in which the
inputs are directly connected
to the outputs!

• As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows.

outputs

inputs

Combining networks

• When the amount of training data is limited, we need to
avoid overfitting.

• Averaging the predictions of many different networks is
a good way to do this.

• It works best if the networks are as different as possible.

• If the data is really a mixture of several different “regimes” it
is helpful to identify these regimes and use a separate,
simple model for each regime.

• We want to use the desired outputs to help cluster cases
into regimes. Just clustering the inputs is not as efficient.

Ways to make predictors differ

• Rely on the learning algorithm getting stuck in a different local
optimum on each run.
• A dubious hack unworthy of a true computer scientist (but

definitely worth a try).

• Use lots of different kinds of models:
• Different architectures
• Different learning algorithms.

• Use different training data for each model:
• Bagging: Resample (with replacement) from the training

set: a,b,c,d,e -> a c c d d
• Boosting: Fit models one at a time. Re-weight each training

case by how badly it is predicted by the models already
fitted.
• This makes efficient use of computer time because it does not

bother to “back-fit” models that were fitted earlier.

