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Overfitting 

• The training data contains information about the regularities 
in the mapping from input to output. But it also contains 
noise
• The target values may be unreliable.
• There is sampling error. There will be accidental 

regularities just because of the particular training cases 
that were chosen.

• When we fit the model, it cannot tell which regularities are 
real and which are caused by sampling error. 
• So it fits both kinds of regularity.
• If the model is very flexible it can model the sampling 

error really well. This is a disaster.



Preventing overfitting

• Use a model that has the right capacity:
• enough to model the true regularities

• not enough to also model the spurious regularities 
(assuming they are weaker)

• Fitting curves in 2D:
• Only fit lines, not higher-degree polynomials

(example on the board)

• Only fit quadratics, not higher degree polynomials



Reminder: Nearest Neighbours

• More nearest-neighbours        less capacity
• More complicated decision surfaces are not possible



Limiting the Capacity of a Neural Network

• Limit the number of hidden units.

• Limit the size of the weights.

• Stop the learning before it has time to overfit.



Weight Decay: Limiting the size of the weights

• Weight-decay involves adding 
an extra term to the cost 
function that penalizes the 
squared weights.

• Keeps weights small unless 
they have big error 
derivatives.
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Other kinds of weight penalty

• Sometimes it works better to 
penalize the absolute values of 
the weights. (I.e., we penalized 
the L1 norm of the weights rather 
than the L2 norm)

• Sometimes leads to smaller test errors

• Makes some weights zero

• Compared to the square penalty, 
which would not tend to do that

• This is sometimes helpful with 
interpreting the features
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Another kind of Weight penalty

• Sometimes it works better to use a weight penalty that 
has negligible effect on large weights.
• Some weights need to be large for the neural network to work 

correctly!
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act = ['Gerard Butler', 'Daniel Radcliffe', 'Michael Vartan', 'Lorraine Bracco', 'Peri Gilpin', 'Angie Harmon']

300 hidden units, 6 actors, 40 examples each, L2-penalized regularization



300 hidden units, 6 actors, 40 examples each, L1-penalized regularization



The effect of weight-decay

• It prevents the network from using weights that it does not 
need (especially the L1 penalty).

• This can often improve generalization a lot. 

• It helps to stop it from fitting the sampling error. 

• It makes a smoother model in which the output changes 
more slowly as the input changes. w

• For the L2 penalty, if the network has two very similar 
inputs it prefers to put half the weight on each rather than 
all the weight on one.



Deciding how much to restrict the capacity

• How do we decide which limit to use and how strong 
to make the limit?
• If we use the test data we get an unfair prediction of the 

error rate we would get on new test data. 

• Suppose we compared a set of models that gave random 
results, the best one on a particular dataset would do 
better than chance.  But it wont do better than chance on 
another test set. 

• So use a separate validation set to do model 
selection.



Using a validation set

• Divide the total dataset into three subsets:
• Training data is used for learning the parameters of the 

model.

• Validation data is not used of learning but is used for 
deciding what type of model and what amount of 
regularization works best.

• Test data is used to get a final, unbiased estimate of how 
well the network works. We expect this estimate to be 
worse than on the validation data.

• We could then re-divide the total dataset to get 
another unbiased estimate of the true error rate.



Preventing overfitting by early 
stopping
• If we have lots of data and a big model, its very 

expensive to keep re-training it with different 
amounts of weight decay.

• It is much cheaper to start with very small weights 
and let them grow until the performance on the 
validation set starts getting worse (but don’t get 
fooled by noise!)

• The capacity of the model is limited because the 
weights have not had time to grow big.



Why early stopping works

• When the weights are very small, 
every hidden unit is in its linear 
range.

• So a net with a large layer of 
hidden units is linear.

• It has no more capacity than 
a linear net in which the 
inputs are directly connected 
to the outputs!

• As the weights grow, the hidden 
units start using their non-linear 
ranges so the capacity grows.

outputs

inputs



Combining networks

• When the amount of training data is limited, we need to 
avoid overfitting. 

• Averaging the predictions of many different networks is 
a good way to do this.

• It works best if the networks are as different as possible.

• If the data is really a mixture of several different “regimes” it 
is helpful to identify these regimes and use a separate, 
simple model for each regime.

• We want to use the desired outputs to help cluster cases 
into regimes. Just clustering the inputs is not as efficient.



Ways to make predictors differ

• Rely on the learning algorithm getting stuck in a different local 
optimum on each run.
• A dubious hack unworthy of a true computer scientist (but 

definitely worth a try).

• Use lots of different kinds of models:
• Different architectures
• Different learning algorithms.

• Use different training data for each model:
• Bagging: Resample (with replacement) from the training 

set:  a,b,c,d,e  -> a c c d d
• Boosting: Fit models one at a time. Re-weight each training 

case by how badly it is predicted by the models already 
fitted. 
• This makes efficient use of computer time because it does not 

bother to “back-fit” models that were fitted earlier.


