Learning with Maximum Likelihood: Linear Regression and Logistic Regression

René Magritte, “La reproduction interdite” (1937)

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016
Michael Guerzhoy
Review: Likelihood

• Assume each data point is generated using some process.
 • E.g., $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$, $\epsilon^{(i)} \sim N(0, \sigma^2)$

• We can now compute the likelihood single datapoint
 • I.e., the probability of the point given θ.
 • E.g., $P(x^{(i)}, y^{(i)} | \theta) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$

• We can then compute the likelihood for the entire training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$ (assuming each point is independent)
 • E.g., $P(x, y | \theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$
Review: Maximum Likelihood

• Maximum Likelihood: the parameter θ for which the data is the most plausible
 - $\arg\max_{\theta} P(\text{data}|\theta)$
 - E.g.:
 $$P(\text{data}|\theta) = P(x, y|\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$
 - $\log P(\text{data}|\theta) = \sum - \frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} + 2m/\log(2\pi\sigma^2)$
 is maximized for a value of θ for which
 $$\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$$
 is minimized
Logistic Regression

• Assume the data is generated according to

 \[y^{(i)} = 1 \text{ with probability } \frac{1}{1+\exp(-\theta^T x^{(i)})} \]

 \[y^{(i)} = 0 \text{ with probability } \frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})} \]

• This can be written concisely as:

 \[
 \frac{P(x^{(i)}, y^{(i)} = 1 | \theta)}{P(x^{(i)}, y^{(i)} = 0 | \theta)} = \exp(\theta^T x^{(i)})
 \]

 (exercise)
Logistic Regression: Likelihood

• $P(x^{(i)}, y^{(i)} | \theta) = \left(\frac{1}{1+\exp(-\theta^T x^{(i)})}\right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})}\right)^{1-y^{(i)}}$

(just a trick that works because $y^{(i)}$ is either 1 or 0)

• $P(data|\theta) = \prod_{i=1}^{m} \left(\frac{1}{1+\exp(-\theta^T x^{(i)})}\right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})}\right)^{1-y^{(i)}}$

• $\log P(data|\theta) = \sum_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1+\exp(-\theta^T x^{(i)})}\right) + (1 - y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})}\right)$
Logistic Regression: Learning and Testing

• Learning: find the best θ that maximizes the log-likelihood:

$$\sum_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})}\right) + (1 - y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})}\right)$$

• For x in the test set, compute

$$P(x, y = 1|\theta) = \frac{1}{1 + \exp(-\theta^T x)}$$

• Predict $y=1$ if $P(x, y = 1|\theta) > .5$
Logistic Regression: Decision Surface
Logistic Regression: Decision Surface

• Predict y=1 if \(\frac{1}{1+\exp(-\theta^T x)} > 0.5 \)

\[\iff \quad -\theta^T x < 0\]
\[\iff \quad \theta^T x > 0\]

• So the decision surface is \(\theta^T x = 0 \), a hyperplane
Logistic Regression

• Outputs the probability of the datapoint’s belonging to a certain class:
 \[y^{(i)} = 1 \text{ with probability } \frac{1}{1+\exp(-\theta^T x^{(i)})} \]
 \[y^{(i)} = 0 \text{ with probability } \frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})} \]

 (compare with linear regression)

• Linear decision surface

• Probably the first thing you would try in a real-world setting for a classification task