Linear Classifiers

Linear Regression of 0/1 Response

Some slides from: Andrew Ng
Classification vs. Regression

• Classification: for the example $(x_1, x_2, ..., x_n)$ predict the label y (e.g., face recognition)

• Regression: for the example $(x_1, x_2, ..., x_n)$ predict a real number y (e.g., house price prediction)
Classification with two classes

• If there are only two classes, transform, e.g.,
 orange => 1
 blue => 0
 to turn the classification problem into a regression problem

• Find the best
 \[h_\theta(x) = \theta^T x \]

• Predict:
 \[\begin{cases}
 1, & h_\theta(x) > .5 \\
 0, & \text{otherwise}
 \end{cases} \]

What is the equation of the decision boundary?
Decision boundary shapes

\[
h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)
\]

Predict \(y = 1 \) if \(-3 + x_1 + x_2 \geq 0\)
Decision boundary shapes
Decision boundary shapes

Predict $y = 1$ if $-1 + x_1^2 + x_2^2 \geq 0$

$h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$
What is the equation for a good decision boundary?
Multiclass Classification

Email foldering/tagging: Work, Friends, Family, Hobby

\[y = 1 \quad y = 2 \quad y = 3 \quad y = 4 \]

Features: \(x_1 \) if “extension” is in the email, 0 otherwise
\(x_2 \) if “dog” is in the email, 0 otherwise

Medical diagrams: Not ill, Cold, Flu

\[y = 1 \quad y = 2 \quad y = 3 \]

Features: temperature, cough presence, ...
Binary classification:

Multi-class classification:
One-vs-all (one-vs-rest):

Class 1: △
Class 2: □
Class 3: ✗

Output the i such that $h^i_\theta(x)$ is the largest
(Idea: a large $h^i_\theta(x)$ means that the classifier is “sure”)