Suppose we have a function \(f \) of two variables. At the point \((x_0, y_0)\), what is the vector that points in the direction of steepest ascent?

As discussed in lecture, in order to increase \(f \) the most in the neighborhood of \((x_0, y_0)\), we need to move to

\[
(x_0 + \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \alpha \frac{\partial f}{\partial y}(x_0, y_0))
\]

for some \(\alpha \).

But where do you move along the \(z \) axis? Near \((x_0, y_0)\), moving \(x \) by \(h \) moves \(f(x, y) \) by \(h \frac{\partial f}{\partial x}(x_0, y_0) \), and moving \(y \) by \(h \) moves \(f(x, y) \) by \(h \frac{\partial f}{\partial y}(x_0, y_0) \). We are doing both of those simultaneously, and the result is moving \(f \) by

\[
\alpha(\frac{\partial f}{\partial x}(x_0, y_0)^2 + \frac{\partial f}{\partial x}(x_0, y_0)^2)
\]

The vector is therefore

\[
(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), \frac{\partial f}{\partial x}(x_0, y_0)^2 + \frac{\partial f}{\partial x}(x_0, y_0)^2)^T.
\]