I

Pt

e

Salvador Dali, “The Persistence of Memory”

CSC320: Introduction to Visual Computing
Many slides from Derek Hoiem, Alyosha Efros, Steve Seitz M |Chae| G uerzhoy

Morphing

Blend from one object to other with a series of
local transformations

Image Transformations

iImage filtering: change range of image
9(x) = T(f(x))

/\/ T e

f

X X

Image warping: change domain of image
g9(x) = (T(x))

N A N

f f

X X

Image Transformations

iImage filtering: change range of image
9(x) = T(f(x))

Image warping: change domain of image
g9(x) = (T(x))

— o T

1

Parametric (global) warping

Transformation T is a coordinate-changing machine:
P’ =T(p)

What does it mean that T is global?
— |Is the same for any point p
— can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
P’ =Mp

N

Parametric (global) warping

Examples of parametric warps:

perspective

cylindrical

Scaling

Scaling a coordinate means multiplying each of its components by a

scalar

Uniform scaling means this scalar is the same for all components:

X 2

N

Scaling

* Non-uniform scaling: different scalars per component:

X x 2,
Y x 0.5

Scaling

* Scaling operation: X'= ax
y'=Dy
* Or,in matrix form: - _ _
X a 0
y'| |0 b
a—/

scaling matrix S

What is the transformation from (x’, y’) to (x, y)?

2-D Rotation

o (X, Y)

(X, ¥)

R ey

2-D Rotation

Polar coordinates...
X =r Ccos (¢)

y =rsin (¢)

X =rcos (¢ +0)
y' =rsin (¢p + 0)

Trig Identity...
X" = r cos(¢) cos(B) — r sin(¢) sin(6)
y’' = r sin(¢) cos(0) + r cos(¢) sin(6)

Substitute...
X =xcos(0) - y sin(0)
y'=xsin(0) +y cos(0)

2-D Rotation

This is easy to capture in matrix form:
x| [cos(@) —sin(@)] x
y'| |sin(@) cos(@) |y

.

Y
R

Even though sin(0) and cos(0) are nonlinear functions of 6,
— x’is a linear combination of x and y
— y’is alinear combination of x and y

What is the inverse transformation?

— Rotation by —0
— For rotation matrices R_l = RT

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?

ot S ER b

2D Scale around (O O)’?
X'=85,7X x| [s, 07x

y'=s,*y V' 0 s

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?
X'=C0os@*X—sin @*y {X}_{COS@)

y'=sSIn®*X+Ccos®*y v'| | sin®
2D Shear?
X'=x+k, *y x| |1

y'=K, *x+y y'| |k

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
KRRk
y'=y y' 0 1)y
2D Mirror over (0,0)?

g e Al

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=X+1,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

All 2D Linear Transformations

Linear transformations are combinations of ...
— Scale,
— Rotation,
— Shear, and
— Mirror
Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Closed under composition

¥

Rk

b
d

}{

X
y

|

Homogeneous Coordinates

Q: How can we represent translation in matrix
form?

X'=X+1,
y'=y+t,

Homogeneous Coordinates

Homogeneous coordinates

represent coordinates in 2
dimensions with a 3-vector

homogeneosicoords

>

Homogeneous Coordinates

2D Points = Homogeneous Coordinates
* Append 1to every 2D point: (xy) 2 (xy 1)
Homogeneous coordinates = 2D Points

* Divide by third coordinate (x y w) =2 (x/w y/w)
Special properties

e Scaleinvariant: (xyw) =k * (xy w)

* (x,v, 0) represents a point at infinity
 (0,0,0)is not allowed

y Scale Invariance

(2,1,1) or(4,2,2) or(6,3,3)

Homogeneous Coordinates
Q: How can we represent translation in matrix
form? X'= X+,

y'=y+t,

A: Using the rightmost column:
10 t,
Translation=0 1 t,
0 0 1

Translation Example

Homogeneous Coordinates

v ¥

$
t, | X+t]
ty

1

o O -
o = O

X
y'|= y|=| Y+
1 1

Basic 2D transformations as 3x3 matrices

(1 0 t |x X s, 0 0
y =10 1 t |y y|=0 s, 0
1] |0 0 1)1 1] |0 0 11
Translate Scale
' x'| [cos® —sin® O] x| x| [1 B, 0]
sn® cos® g, 1 0
0 0 0 0 1
Rotate Shear

Matrix Composition

Transformations can be combined by
matrix multiplication

x| ([1 0 tx[cos® —sin® 0sx O
y'i=/|0 1 ty||sn® cos® Of 0 sy
w| oo 1] 0 0 1o o
p’ = T(tt,) R(O) S(sx:Sy)

Does the order of multiplication matter?

— OO

S < X

Affine Transformations

Affine transformations are combinations of
« Linear transformations, and
« Translations

Properties of affine transformations:
« Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines remain parallel
« Closed under composition

Projective Transformations

Projective transformations are combos of
« Affine transformations, and y
* Projective warps |

Properties of projective transformations:
« Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratios are not preserved
» Closed under composition
* Models change of basis
» Projective matrix is defined up to a scale (8 DOF)

@D

—h O

2D image transformations

,A
Y 5111111111n PLoJ ﬂm ©
translation
/"y
Emhdefm aﬂme >
~— x
Name Matrix #D.O.F. | Preserves: Icon
translation [I ‘ t]2 ; 2 orientation + - - -
o
rigid (Euclidean) [R ‘ t]2 \ 3 lengths + - - - O
oy
similarity [sR ‘ t]2 \ 4 angles + - - - O
oy
afline [A]2><‘3 6 parallelism + - - - E
projective [H]3)(3 8 straight lines D

These transformations are a nested set of groups
* Closed under composition and inverse is a member

lmage warping

* Given a coordinate transform (x,y’) = T(x,y)
and a source image f(x,y), how do we compute
a transformed image g(x’y’)?

Forward warping

e Send each pixel f(x,y) to its corresponding
location

. (x,y’) = T(x,y) in the second image

Forward warping

(x’,y) = T(x,y) in the second image

What is the problem with this approach?

m
y4 'y

k) gy

e Send each pixel f(x,y) to its corresponding
location
Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y’)
— Known as “splatting”

Inverse warping

* Get each pixel g(x’y’) from its
corresponding location

. (x,y) = T1(x’y’) in the first image

Q: what if pixel comes from “between” two pixels?

Inverse warping

(x,y) = T1(x’,y) in the first image

yi v
X (k) gy

* Get each pixel g(x’y’) from its
corresponding location
Q: what if pixel comes from “between” two pixels?

A:. Interpolate color value from neighbors

— nearest neighbor, bilinear, Gaussian, bicubic
— E.qg. scipy.interpolate.interp2d

Forward vs. inverse warping
* Q: which is better?

* A: Usually inverse—eliminates holes

— however, it requires an invertible warp function

Recovering Transformations

* What if we know f and g and want to
recover the transform T?

— willing to let user provide correspondences

* How many do we need?

Translation: # correspondences?

How many Degrees of Freedom?

* How many correspondences needed for translation?

What is the transformation matrix?

_1 0 plx_px_
01 p,-p,

00 1

Euclidian: # correspondences?

* How many DOF?

* How many correspondences needed for
translation+rotation?

Affine: # correspondences?

* How many DOF?
* How many correspondences needed for affine?

Projective: # correspondences?

How many DOF?

How many correspondences needed for
orojective?

