
Image Warping

Many slides from Derek Hoiem, Alyosha Efros, Steve Seitz

CSC320: Introduction to Visual Computing

Michael Guerzhoy

Salvador Dalí, “The Persistence of Memory”

Morphing

Blend from one object to other with a series of

local transformations

Image Transformations

image filtering: change range of image

g(x) = T(f(x))

f

x

T

f

x

f

x

T

f

x

image warping: change domain of image

g(x) = f(T(x))

Image Transformations

T

T

f

f g

g

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))

Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Mp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
M

'

'

Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S

What is the transformation from (x’, y’) to (x, y)?

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f + )

y’ = r sin (f + )

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

TRR 1

R

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Identity?

yy
xx



'
'



















y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'































y

x

s

s

y

x

y

x

0

0

'

'

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'


































y

x

y

x

cossin

sincos

'

'

2D Shear?

yxky

ykxx

y

x





*'

*'



























y

x

k

k

y

x

y

x

1

1

'

'

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx




'
'



















y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx




'
'
























y
x

y
x

10
01

'
'

2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx





'

'

Only linear 2D transformations

can be represented with a 2x2 matrix

NO!

All 2D Linear Transformations

• Linear transformations are combinations of …

– Scale,

– Rotation,

– Shear, and

– Mirror

• Properties of linear transformations:

– Origin maps to origin

– Lines map to lines

– Parallel lines remain parallel

– Closed under composition



























y

x

dc

ba

y

x

'

'































y
x

lk
ji

hg
fe

dc
ba

y
x
'
'

Homogeneous Coordinates

Q: How can we represent translation in matrix
form?

y

x

tyy

txx





'

'

Homogeneous Coordinates
Homogeneous coordinates

• represent coordinates in 2
dimensions with a 3-vector

















 








1

y

x

y

x
coords shomogeneou

Homogeneous Coordinates
2D Points  Homogeneous Coordinates
• Append 1 to every 2D point: (x y)  (x y 1)
Homogeneous coordinates  2D Points
• Divide by third coordinate (x y w)  (x/w y/w)
Special properties
• Scale invariant: (x y w) = k * (x y w)
• (x, y, 0) represents a point at infinity
• (0, 0, 0) is not allowed

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y Scale Invariance

Homogeneous Coordinates

Q: How can we represent translation in matrix
form?

A: Using the rightmost column:



















100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx





'

'

Translation Example









































































11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

Basic 2D transformations as 3x3 matrices























































1100

0cossin

0sincos

1

'

'

y

x

y

x



















































1100

10

01

1

'

'

y

x

t

t

y

x

y

x



















































1100

01

01

1

'

'

y

x

y

x

y

x





Translate

Rotate Shear



















































1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

Matrix Composition

Transformations can be combined by
matrix multiplication
























































































w
y
x

sy
sx

ty
tx

w
y
x

100
00
00

100
0cossin
0sincos

100
10
01

'
'
'

p’ = T(tx,ty) R() S(sx,sy) p

Does the order of multiplication matter?

Affine Transformations



















































11001

'

'

y

x

fed

cba

y

x
Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Closed under composition

Projective Transformations












































w
y
x

ihg
fed
cba

w
y
x

'
'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Image warping

• Given a coordinate transform (x’,y’) = T(x,y)
and a source image f(x,y), how do we compute
a transformed image g(x’,y’)?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding
location

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding
location

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

What is the problem with this approach?

(x’,y’) = T(x,y) in the second image

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its
corresponding location

• (x,y) = T-1(x’,y’) in the first image

x x’

Q: what if pixel comes from “between” two pixels?

y’
T-1(x,y)

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its
corresponding location

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– E.g. scipy.interpolate.interp2d

(x,y) = T-1(x’,y’) in the first image

Forward vs. inverse warping

• Q: which is better?

• A: Usually inverse—eliminates holes
– however, it requires an invertible warp function

Recovering Transformations

• What if we know f and g and want to
recover the transform T?

– willing to let user provide correspondences

• How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?

Translation: # correspondences?

• How many Degrees of Freedom?
• How many correspondences needed for translation?
• What is the transformation matrix?

x x’

T(x,y)

y y’

?























100

'10

'01

yy

xx

pp

pp

M

Euclidian: # correspondences?

• How many DOF?
• How many correspondences needed for

translation+rotation?

x x’

T(x,y)

y y’

?

Affine: # correspondences?

• How many DOF?

• How many correspondences needed for affine?

x x’

T(x,y)

y y’

?

Projective: # correspondences?

• How many DOF?
• How many correspondences needed for

projective?

x x’

T(x,y)

y y’

?

