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Morphing

Blend from one object to other with a series of 

local transformations



Image Transformations

image filtering: change range of image

g(x) = T(f(x))
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image warping: change domain of image

g(x) = f(T(x))



Image Transformations
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image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))



Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:
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scaling matrix S

What is the transformation from (x’, y’) to (x, y)?



2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f + )

y’ = r sin (f + )

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices
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2x2 Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Identity?
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2D Scale around (0,0)?
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2x2 Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx
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2D Shear?

yxky

ykxx
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2x2 Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx




'
'



















y
x

y
x

10
01

'
'

2D Mirror over (0,0)?
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2x2 Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Translation?
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Only linear 2D transformations 

can be represented with a 2x2 matrix

NO!



All 2D Linear Transformations

• Linear transformations are combinations of …

– Scale,

– Rotation,

– Shear, and

– Mirror

• Properties of linear transformations:

– Origin maps to origin

– Lines map to lines

– Parallel lines remain parallel

– Closed under composition
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Homogeneous Coordinates

Q: How can we represent translation in matrix 
form?
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Homogeneous Coordinates
Homogeneous coordinates

• represent coordinates in 2 
dimensions with a 3-vector
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Homogeneous Coordinates
2D Points  Homogeneous Coordinates
• Append 1 to every 2D point: (x y)  (x y 1)
Homogeneous coordinates  2D Points
• Divide by third coordinate (x y w)  (x/w y/w)
Special properties
• Scale invariant: (x y w) = k * (x y w)
• (x, y, 0) represents a point at infinity
• (0, 0, 0) is not allowed

1 2
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(2,1,1) or (4,2,2) or (6,3,3)

x

y Scale Invariance



Homogeneous Coordinates

Q: How can we represent translation in matrix 
form?

A: Using the rightmost column:
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Translation Example
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Basic 2D transformations as 3x3 matrices
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Matrix Composition

Transformations can be combined by 
matrix multiplication
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p’ =     T(tx,ty)                 R()         S(sx,sy) p

Does the order of multiplication matter?



Affine Transformations
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Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Closed under composition



Projective Transformations
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• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member



Image warping

• Given a coordinate transform (x’,y’) = T(x,y) 
and a source image f(x,y), how do we compute 
a transformed image g(x’,y’)?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding 
location 

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding 
location 

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

What is the problem with this approach?  

(x’,y’) = T(x,y) in the second image



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its 
corresponding location 

• (x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its 
corresponding location 

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– E.g. scipy.interpolate.interp2d

(x,y) = T-1(x’,y’) in the first image



Forward vs. inverse warping

• Q:  which is better?

• A:  Usually inverse—eliminates holes
– however, it requires an invertible warp function



Recovering Transformations

• What if we know f and g and want to 
recover the transform T?

– willing to let user provide correspondences

• How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?



Translation: # correspondences?

• How many Degrees of Freedom?
• How many correspondences needed for translation?
• What is the transformation matrix?

x x’

T(x,y)

y y’

?
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Euclidian: # correspondences?

• How many DOF?
• How many correspondences needed for 

translation+rotation?

x x’

T(x,y)

y y’

?



Affine: # correspondences?

• How many DOF?

• How many correspondences needed for affine?

x x’

T(x,y)

y y’

?



Projective: # correspondences?

• How many DOF?
• How many correspondences needed for 

projective?

x x’

T(x,y)

y y’

?


