Upsampling and Interpolation

Nearest-neighbor interpolation

Many slides from
Steve Marschner, Alexei Efros, Noah Snavely

CSC320: Introduction to Visual Computing
Michael Guerzhoy
Last time: Non-Maximum Suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth
Interpolation

• See blackboard
Bilinear Interpolation: Summary

\[
f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})
\]

\[
f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})
\]

\[
f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2).
\]

\[
f(x, y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y_2 - y) + \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y_2 - y) + \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y - y_1) + \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y - y_1)
\]

\[
= \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(f(Q_{11})(x_2 - x)(y_2 - y) + f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y - y_1) + f(Q_{22})(x - x_1)(y - y_1) \right)
\]
Bilinear Interpolation

• Not actually linear
 – If you fix x it’s linear in y. If you fix y, it’s linear in x.
Upsampling

• This image is too small for this screen:

• How can we make it 10 times as big?

• Simplest approach:
 repeat each row
 and column 10 times

• ("Nearest neighbor interpolation")
Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{ f(xd, yd) \} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz
Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f(xd, yd)\} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale
Image interpolation

- What if we don’t know \(f \) ?
 - Guess an approximation: \(\tilde{f} \)
 - Can be done in a principled way: filtering
 - Convert \(F \) to a continuous function:
 \[
 f_F(x) = F\left(\frac{x}{d}\right) \text{ when } \frac{x}{d} \text{ is an integer, 0 otherwise}
 \]
 - Reconstruct by convolution with a reconstruction filter, \(h \)
 \[
 \tilde{f} = h \ast f_F
 \]

Adapted from: S. Seitz
Image interpolation

- **sinc(x)**: "Ideal" reconstruction
- **II(x)**: Nearest-neighbor interpolation
- **Λ(x)**: Linear interpolation
- **gauss(x)**: Gaussian reconstruction

Source: B. Curless
Reconstruction filters

- What does the 2D version of this hat function look like?

\[h(x) \quad h(x, y) \]

performs linear interpolation
(tent function) performs bilinear interpolation

Better filters give better resampled images
- **Bicubic** is common choice

\[
r(x) = \frac{1}{6} \left(\begin{array}{c}
(12 - 9B - 6C)x^3 + (-18 + 12B + 6C)x^2 + (6 - 2B)x + (6 - 2B) \\
(6B + 30C)x^3 + (-12B - 48C)x^2 + (8B + 24C) \\
0
\end{array} \right) \\
1 \leq |x| < 2 \text{ otherwise}
\]
Upsampling

- The empty pixels are initially set to 0
- Convolve with a (Gaussian, or another) filter
- If the filter sums to 1, multiply the result by 4
 - \(\frac{3}{4} \) of the new image was initially 0
Image interpolation

Original image: x 10

Nearest-neighbor interpolation
Bilinear interpolation
Bicubic interpolation
Image interpolation

Also used for *resampling*