
CSC320: Introduction to Visual Computing

Michael Guerzhoy
Many slides from 

Noah Snavely, Derek Hoeim, Robert Collins

PCA, Eigenfaces, and Face Detection

Salvador Dalí, “Galatea of the Spheres”



What makes face detection hard?

Variation in appearance: can’t match a single
face template and expect it to work.
(Note: it doesn’t work that great for eyes either)
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*Face detection: given an image, find the coordinates of the faces



What makes face detection hard?

Lighting
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What makes face detection hard?

Occlusion



What makes face recognition hard?

Viewpoint
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Face detection

• Do these images contain faces?  Where?



Simple Idea for Face Detection

1. Treat each window in the image like a vector

2. Test whether x matches some     in the database 

x
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SSD: 𝑦𝑗 − 𝑥
2

Cross-correlation: 𝑦𝑗 ⋅ 𝑥

NCC, zero-mean NCC…



The space of all face images
• When viewed as vectors of pixel values, face images are 

extremely high-dimensional
– 100x100 image = 10,000 dimensions

– Slow and lots of storage

• But very few 10,000-dimensional vectors are valid face 
images

• We want to effectively model the subspace of face images
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The space of all face images

• Eigenface idea: construct a low-dimensional linear 
subspace that contains most of the face images 
possible (possibly with small errors)

• Here: a 1D subspace arguably suffices



The space of faces

An image is a point in a high dimensional space

• An W x H intensity image is a point in RWH

• We can define vectors in this space as we did in the 2D case

+=



Reconstruction

• For a subspace with the orthonormal basis of 
size k Vk = 𝑣0, 𝑣1, 𝑣2, … 𝑣𝑘 , the best 
reconstruction of x in that subspace is:

 𝑥𝑘 = 𝑥 ⋅ 𝑣0 𝑣0 + 𝑥 ⋅ 𝑣1 𝑣1 + ⋯+ 𝑥 ⋅ 𝑣𝑘 𝑣𝑘

– If x is in the span of 𝑉𝑘, this is an exact 
reconstruction

– If not, this is the projection of x on V

• Squared reconstruction error:  𝑥𝑘 − 𝑥 2



Reconstruction cont’d

•  𝑥𝑘 = 𝑥 ⋅ 𝑣0 𝑣0 + 𝑥 ⋅ 𝑣1 𝑣1 + ⋯+ 𝑥 ⋅ 𝑣𝑘 𝑣𝑘

• Note: in 𝑥 ⋅ 𝑣0 𝑣0, 

– 𝑥 ⋅ 𝑣0 is a measure of how similar x is to 𝑣0

– The more similar x is to 𝑣0, the larger the 
contribution from 𝑣0 is to the sum



Representation and reconstruction

• Face x in “face space” coordinates:

• Reconstruction:

= +

µ       +    w1u1+w2u2+w3u3+w4u4+ …

=

^
x =
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P = 4

P = 200

P = 400

Reconstruction

After computing eigenfaces using 400 face 

images from ORL face database
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Principal Component Analysis

• Suppose the columns of a matrix 𝑋𝑁×𝐾 are the datapoints (N 
is the size of each image, K is the size of the dataset), and we 
would like to obtain an orthonormal basis of size k that 
produces the smallest sum of squared reconstruction errors 
for all the columns of 𝑋 −  𝑋

–  𝑋 is the average column of X

• Answer: the basis we are looking for is the k
eigenvectors of 𝑋 −  𝑋 𝑋 −  𝑋 𝑇 that 
correspond to the k largest eigenvalues



PCA – cont’d

• 𝑋 −  𝑋 𝑋 −  𝑋 𝑇 is called the covariance matrix

• If x is the datapoint (obtained after subtracting 
the mean), and V an orthonormal basis, 𝑉𝑇𝑥 is a 
column of the dot products of x and the elements 
of x

• So the reconstruction for the centered x is 
 𝑥 = 𝑉(𝑉𝑇𝑥))

• PCA is the procedure of obtaining the k 
eigenvectors 𝑉𝑘



NOTE: centering

• If the image x is not centred (i.e.,  𝑋 was not 
subtracted), the reconstruction is:

 𝑥 =  𝑋 + 𝑉(𝑉𝑇(𝑥 −  𝑋))



Proof that PCA produces the best reconstruction

• (Fairly easy calculus – look it up, or we can talk in office hours, or possibly 
we’ll do it next week)



Obtaining the Principal Components

• 𝑋𝑋𝑇 can be huge

• There are tricks to still compute the EVs



PCA as dimensionality reduction

The set of faces is a “subspace” of the set of images

• Suppose it is K dimensional

• We can find the best subspace using PCA

• This is like fitting a “hyper-plane” to the set of faces

– spanned by vectors v1, v2, ..., vK

– any face 



Eigenfaces example

Top eigenvectors: u1,…uk

Mean: μ
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Another Eigenface set



Linear subspaces

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line

- use it for classification—near 0 for orange pts

- position along line

- use it to specify which orange point it is



Dimensionality reduction

How to find v1 and v2 ?

Dimensionality reduction

• We can represent the orange points with only their v1 coordinates

– since v2 coordinates are all essentially 0

• This makes it much cheaper to store and compare points

• A bigger deal for higher dimensional problems



Another Interpretation of PCA

The eigenvectors of the covariance matrix define a new 

coordinate system

• eigenvector with largest eigenvalue captures the most 

variation among training vectors x

• eigenvector with smallest eigenvalue has least variation

• The eigenvectors are known as principal components



Data Compression using PCA

• For each data point x, store 𝑉𝑘
𝑇𝑥 (a k-dimensional 

vector). The reconstruction error would be the 

smallest for a set of k numbers



Face Detection using PCA

• For each (centered) window x and for a set of 

principal components V, compute the Euclidean 

distance 𝑉𝑉𝑇𝑥 − 𝑥

• That is the distance between the reconstruction of x

and x. The reconstruction of x is similar to x if x lies in 

the face subspace

• Note: the reconstruction is always in the face subspace



Issues:  dimensionality

What if your space isn’t flat?

• PCA may not help

Nonlinear methods

LLE, MDS, etc.



Moving forward

• Faces are pretty well-behaved

– Mostly the same basic shape

– Lie close to a low-dimensional subspace

• Not all objects are as nice



Different appearance, similar parts


