
Review: Morphing and Warping

CSC320: Introduction to Visual Computing

Michael Guerzhoy
Many slides borrowed
from Derek Hoeim, Alexei Efros

Edvard Munch, “The Scream”

Homogeneous Coordinates

Q: How can we represent translation in matrix
form?

y

x

tyy

txx





'

'

Homogeneous Coordinates
Homogeneous coordinates

• represent coordinates in 2
dimensions with a 3-vector

















 








1

y

x

y

x
coords shomogeneou

Homogeneous Coordinates

Q: How can we represent translation in matrix
form?

A: Using the rightmost column:



















100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx





'

'

Translation Example









































































11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

Homogeneous Coordinates
2D Points  Homogeneous Coordinates
• Append 1 to every 2D point: (x y)  (x y 1)
Homogeneous coordinates  2D Points
• Divide by third coordinate (x y w)  (x/w y/w)
Special properties
• Scale invariant: (x y w) = k * (x y w)
• (x, y, 0) represents a point at infinity
• (0, 0, 0) is not allowed

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y Scale Invariance

Basic 2D transformations as 3x3 matrices























































1100

0cossin

0sincos

1

'

'

y

x

y

x



















































1100

10

01

1

'

'

y

x

t

t

y

x

y

x



















































1100

01

01

1

'

'

y

x

y

x

y

x





Translate

Rotate Shear



















































1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

Matrix Composition

Transformations can be combined by
matrix multiplication
























































































w
y
x

sy
sx

ty
tx

w
y
x

100
00
00

100
0cossin
0sincos

100
10
01

'
'
'

p’ = T(tx,ty) R() S(sx,sy) p

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Recovering Transformations

• What if we know f and g and want to
recover the transform T?

– willing to let user provide correspondences

• How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?

Affine: # correspondences?

• How many DOF?

• How many correspondences needed for affine?

x x’

T(x,y)

y y’

?

Image warping

• Given a coordinate transform (x’,y’) = T(x,y)
and a source image f(x,y), how do we compute
a transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding
location

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding
location

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

What is the problem with this approach?

(x’,y’) = T(x,y) in the second image

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its
corresponding location

• (x,y) = T-1(x’,y’) in the first image

x x’

Q: what if pixel comes from “between” two pixels?

y’
T-1(x,y)

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its
corresponding location

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– E.g. scipy.interpolate.interp2d

(x,y) = T-1(x’,y’) in the first image

Warp specification - sparse

How can we specify the warp?

Specify corresponding points

• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels? Warping

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh (triangulation) in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to

destination

• Affine warp with three corresponding points

Image Morphing

How do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped images

Summary of morphing

1. Define corresponding points
2. Define triangulation on points

– Use same triangulation for both images

3. For each t in 0:step:1
a. Compute the average shape (weighted average of

points)
b. For each triangle in the average shape

• Get the affine projection to the corresponding triangles in
each image

• For each pixel in the triangle, find the corresponding points
in each image and set value to weighted average
(optionally use interpolation)

c. Save the image as the next frame of the sequence

