
Review: Morphing and Warping

CSC320: Introduction to Visual Computing

Michael Guerzhoy
Many slides borrowed 
from Derek Hoeim, Alexei Efros

Edvard Munch, “The Scream”



Homogeneous Coordinates

Q: How can we represent translation in matrix 
form?
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Homogeneous Coordinates
Homogeneous coordinates

• represent coordinates in 2 
dimensions with a 3-vector
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Homogeneous Coordinates

Q: How can we represent translation in matrix 
form?

A: Using the rightmost column:
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Translation Example
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Homogeneous Coordinates
2D Points  Homogeneous Coordinates
• Append 1 to every 2D point: (x y)  (x y 1)
Homogeneous coordinates  2D Points
• Divide by third coordinate (x y w)  (x/w y/w)
Special properties
• Scale invariant: (x y w) = k * (x y w)
• (x, y, 0) represents a point at infinity
• (0, 0, 0) is not allowed
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Basic 2D transformations as 3x3 matrices
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Matrix Composition

Transformations can be combined by 
matrix multiplication
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2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member



Recovering Transformations

• What if we know f and g and want to 
recover the transform T?

– willing to let user provide correspondences

• How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?



Affine: # correspondences?

• How many DOF?

• How many correspondences needed for affine?

x x’

T(x,y)

y y’

?



Image warping

• Given a coordinate transform (x’,y’) = T(x,y) 
and a source image f(x,y), how do we compute 
a transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding 
location 

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding 
location 

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

What is the problem with this approach?  

(x’,y’) = T(x,y) in the second image



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its 
corresponding location 

• (x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its 
corresponding location 

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– E.g. scipy.interpolate.interp2d

(x,y) = T-1(x’,y’) in the first image



Warp specification - sparse

How can we specify the warp?

Specify corresponding points

• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels? Warping



Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh (triangulation) in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to 

destination

• Affine warp with three corresponding points



Image Morphing

How do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped images



Summary of morphing

1. Define corresponding points
2. Define triangulation on points

– Use same triangulation for both images

3. For each t in 0:step:1
a. Compute the average shape (weighted average of 

points)
b. For each triangle in the average shape

• Get the affine projection to the corresponding triangles in 
each image

• For each pixel in the triangle, find the corresponding points 
in each image and set value to weighted average 
(optionally use interpolation)

c. Save the image as the next frame of the sequence


