Edge Detection

René Magritte, “Decalcomania”
Discontinuities in Intensity

Source: Robert Collins
Origin of Edges

- Edges are caused by a variety of factors

Source: Steve Seitz
Boundaries of objects
Boundaries of material properties
Boundaries of Lighting
Characterizing edges

- An edge is a place of rapid change in the image intensity function

![Image of an edge in an image, with an intensity function along a horizontal scanline and the first derivative showing extrema at the edges]
Intensity profile

Intensity

Gradient
With a little Gaussian noise
Effects of noise

• Consider a single row or column of the image
 – Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
Effects of noise

• Difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What can we do about it?

Source: D. Forsyth
Solution: smooth first

- To find edges, look for peaks in \(\frac{d}{dx} (f * g) \)

Source: S. Seitz
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:
 \[
 \frac{d}{dx} (f * g) = f * \frac{d}{dx} g
 \]

- This saves us one operation:

Source: S. Seitz
Derivative of Gaussian filter

* \[1 \ 0 \ -1\] =
Derivative of Gaussian filter

x-direction

y-direction
Terminology

- Edge normal: unit vector in the direction of maximum intensity change.
- Edge direction: unit vector along edge (perpendicular to edge normal).
- Edge position or center: the image position at which the edge is located.
- Edge strength or magnitude: local image contrast along the normal.

If the edge direction is \((u, v)\), the edge normal is \((-v, u)\) (or \((v, -u)\)).

Local image contrast at \((x, y)\) along \((u, -v)\): something like \(|I(x+u, x-v)-I(x-u, x+v)|\).
Gradients (derivatives) of 2D images

Edge pixels are at local maxima of gradient magnitude.
Gradient direction is always perpendicular to edge direction.

Gradient Vector: \(\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]^T \)

Magnitude: \(|\nabla I| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2} \)

Orientation: \(\theta = \text{atan2}\left(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x}\right) \)
Why?

• The direction of the gradient is always “uphill” on the surface
 – In image, towards brightest point in the neighbourhood
 – If we need to go *mostly* in the x direction, \(\frac{\partial I}{\partial x} \) will be larger than \(\frac{\partial I}{\partial y} \)
Reminder: How to Computer Image Derivatives? dI/dx
Simple Edge Detection Using Gradients

• Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
• Compute gradient magnitude at each pixel
• If magnitude at a pixel exceeds a threshold, report a possible edge point.
Compute Spatial Image Gradients

\[I_x = \frac{I(x+1,y) - I(x-1,y)}{2} \]

Partial derivative wrt \(x \)

\[I_y = \frac{I(x,y+1) - I(x,y-1)}{2} \]

Partial derivative wrt \(y \)

Replace with your favorite smoothing + derivative operator
Simple Edge Detection Using Gradients

• Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters

• **Compute gradient magnitude at each pixel**

• If magnitude at a pixel exceeds a threshold, report a possible edge point.
Compute Gradient Magnitude

Magnitude of gradient
\[\text{sqrt}(I_x^2 + I_y^2) \]

Measures steepness of slope at each pixel
(= edge contrast)
Simple Edge Detection Using Gradients

• Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
• Compute gradient magnitude at each pixel
• If magnitude at a pixel exceeds a threshold, report a possible edge point.
Example – cont.: Binary edge image

Threshold Mag > 30
How to choose the threshold?

> 10

> 30

> 80
There is ALWAYS a tradeoff between smoothing and good edge localization!
Edge Thinning and Linking

Smoothing + thresholding gives us a binary mask with "thick" edges.

We want thin, one-pixel wide, connected contours.
Canny edge detection: non-maximum suppression

- We want to suppress points along the curve where the magnitude is non-maximal.
- We do this by looking for a maximum along the *normal* to the edge (i.e., along the gradient).
Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth
Which threshold to pick?

- If the threshold is too high, we get gaps
- If the threshold is too low, extra edges
Canny: Hysteresis Thresholding

- Keep both a high threshold H and a low threshold L
- Any edges with strength $<L$ are discarded
- Any edges with strength $>H$ are kept
- An edge P with strength between L and H is kept only if there is a pth of edges with strength $>L$ connecting P to an edge of strength $>H$
Aside

- ὑστέρησις: “Deficiency, lagging behind”
- Wikipedia: “[T]he dependence of the output of a system not only on its current input, but also on its history of past inputs”
Hysteresis thresholding

• Check that maximum value of gradient value is sufficiently large
 – drop-outs? use hysteresis
 • use a high threshold to start edge curves and a low threshold to continue them.

Source: S. Seitz
Hysteresis Thresholding

T=15

T=5

Hysteresis

$T_h=15 \quad T_i = 5$

Hysteresis thresholding
Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz
Canny edge detector

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

2. Compute magnitude of gradient at every pixel

$$M(x, y) = |\nabla I| = \sqrt{I_x^2 + I_y^2}$$

3. Eliminate those pixels that are not local maxima of the magnitude in the direction of the gradient

4. Hysteresis Thresholding

- Select the pixels such that $M > T_h$ (high threshold)
- Collect the pixels such that $M > T_l$ (low threshold) that are neighbors of already collected edge points

Source: D. Lowe, L. Fei-Fei
Learning to detect boundaries

- Berkeley segmentation database:
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
pB boundary detector

Martin, Fowlkes, Malik 2004: Learning to Detection Natural Boundaries…

Figure from Fowlkes
pB Boundary Detector

Figure from Fowlkes
Results

Human (0.95)

Pb (0.88)
Results

Human Pb (0.96)

Global Pb (0.88)
State of edge detection

• Local edge detection is mostly solved
 – Intensity gradient, color, texture

• Some methods to take into account longer contours, but could probably do better

• Poor use of object and high-level information