Colour Balancing and Mapping

Rene Magritte, “The Empire of Lights”

CSC320: Introduction to Visual Computing
Michael Guerzhoy

Slides from Derek Hoiem, Robert Collins
Colour balancing

• Make objects have the colour in the photo that they have in the world (with neutral illumination)

Photos: http://www.kenrockwell.com/tech/whitebalance.htm
The original is in the middle. At left, white-balanced as if the dress is white-gold. At right, white-balanced to blue-black

•www.wired.com/2015/02/science-one-agrees-color-dress/
Important ideas

• Typical images are gray on average; this can be used to detect distortions

• Larger differences are more visible, so using the full intensity range improves visibility

• It’s often easier to work in a non-RGB color space
Colour balancing via linear adjustment

• Simple idea: multiply R, G, and B values by separate constants

\[
\begin{bmatrix}
\tilde{r} \\
\tilde{g} \\
\tilde{b}
\end{bmatrix} =
\begin{bmatrix}
\alpha_r & 0 & 0 \\
0 & \alpha_g & 0 \\
0 & 0 & \alpha_b
\end{bmatrix}
\begin{bmatrix}
r \\
g \\
b
\end{bmatrix}
\]

• How to choose the constants?
 – “Gray world” assumption: average value should be gray
 – White balancing: choose a reference as the white or gray color
 – Better to balance in camera’s RGB (linear) than display RGB (non-linear)
Tone Mapping

• Typical problem: compress values from a high range to a smaller range
 – E.g., camera captures 12-bit linear intensity and needs to compress to 8 bits
Limited Dynamic Range

Range of Scene Luminance (~10^{-6} to 10^{+8} cd/m²)

- **starlight**: 10^{-6}
- **moonlight**: 10^{-2}
- **office light**: 1
- **daylight**: 10
- **flashbulb**: 10^{+8}

Sliding window

- **Contrast range of human eye**: ~10,000:1
- **Contrast range of 8-bit sensor**: ~100:1
Limited Dynamic Range Can be Good
Example: Linear display of HDR (high dynamic range)

Scaled for brightest pixels

Scaled for darkest 0.1% intensities
Less “Strawmannish” Version

Underexposed (shutter too fast) Oversaturated (shutter too slow)
Global operator (Reinhart et al.)

- Simple solution: map to a non-linear range of values

\[L_{\text{display}} = \frac{L_{\text{world}}}{1 + L_{\text{world}}} \]
Reinhart Operator

Darkest 0.1% scaled to display device
Log transformations help with displaying Fourier Transforms

FIGURE 3.5
(a) Fourier spectrum.
(b) Result of applying the log transformation given in Eq. (3.2-2) with $c = 1$.
Contrast Stretching

\[T(r) \]

\[\begin{align*}
& r_1, s_1 \\
& r_2, s_2 \\
& L/4 \\
& L/2 \\
& 3L/4 \\
& L - 1
\end{align*} \]

\[\text{Input gray level, } r \]

\[\text{Output gray level, } s \]

Figure 3.10
Contrast stretching.
(a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)
Contrast Stretching

Figure 3.10
Contrast stretching.
(a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding.
(Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)
Histogram equalization

• Basic idea: reassign values so that the number of pixels with each value is more evenly distributed

• Histogram: a count of how many pixels have each value

\[h_i = \sum_{j \in \text{pixels}} 1(p_j == i) \]

• Cumulative histogram: count of number of pixels less than or equal to each value

\[c_i = c_{i-1} + h_i \]
Image Histograms

Figure 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)
Histogram Equalization

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.
Algorithm for global histogram equalization

Goal: Given image with pixel values \(0 \leq p_j \leq 255 \), \(j = 0 \ldots N \)
specify function \(f(i) \) that remaps pixel values, so that the new values are more broadly distributed

1. Compute cumulative histogram: \(c(i), i = 0 \ldots 255 \)
 \[
 h(i) = \sum_{j \in \text{pixels}} 1(p_j == i), \; c(i) = c(i - 1) + h(i)
 \]

2. \(f(i) = \alpha \cdot \frac{c(i)}{N} \cdot 255 + (1 - \alpha) \cdot i \)

 – Blends between original image and image with uniform histogram
(Explanation on the blackboard)

- Explanation of histogram equalization