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Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 30 meters becomes the portrait 

of Abraham Lincoln”, 1976







A set of basis vectors

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can 
be rewritten as a weighted 
sum of sines and cosines of 
different frequencies. 

Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

But it’s (mostly) true!
• called Fourier Series

• there are some subtle 
restrictions

...the manner in which the author arrives at these 

equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something 

to be desired on the score of generality and even 

rigour.

Laplace

Lagrange
Legendre



A sum of sines

Our building block:

Add enough of them to get 

any signal f(x) you want!

What does each control?

Which one encodes the 

coarse vs. fine structure of 

the signal?
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Fourier Transform

We want to understand the frequency  of our signal.  So, 

let’s reparametrize the signal by  instead of x:
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f(x) F()Fourier 

Transform

F() f(x)Inverse Fourier 

Transform

For every  from 0 to inf, F() holds the amplitude A 

and phase  of the corresponding sine  
• How can F hold both?  Complex number trick!
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We can always go back:



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra

Usually, frequency is more interesting than the phase
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FT: Just a change of basis

.

.
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* =

M * f(x) = F()



IFT: Just a change of basis

.

.

.

* =

M-1 * F() = f(x)



Finally: Scary Math



Finally: Scary Math

…not really scary:

is hiding our old friend:

So it’s just our signal f(x) times sine at frequency 
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phase can be encoded

by sin/cos pair



Extension to 2D



2D Discrete Fourier Transform



2D Discrete Fourier Transform (DFT)

• If  ℎ 𝑘, 𝑙 is the 2D DFT of h, then

•  |ℎ 𝑘, 𝑙 |2 = 𝑅𝑒  ℎ 𝑘, 𝑙
2
+ 𝐼𝑚  ℎ 𝑘, 𝑙

2
is the power 

spectrum of h



2D Fourier Basis Functions

http://www.algebra.com/algebra/homework/word/geometry/Altitud

e-drawn-to-the-hypotenuse-in-a-right-triangle.lesson

Note:

(0, 0) is in the top-left 

corner in the images 

here.

In other images in this 

lecture, the origin is on 

the bottom-left



Zero crossings

• Zero crossing of sin 𝜔𝑘𝑛 + 𝜔𝑙𝑚 :
• 𝜔𝑘𝑛 + 𝜔𝑙𝑚 = 𝑞𝜋 for some q

• Corresponds to an “edge” in the grating (switch 

from positive numbers to negatives, or vice versa)

• What is the orientation of the edge?

• 𝜔𝑘𝑛 + 𝜔𝑙𝑚 = 𝑞𝜋

• 𝑚 =
𝑞𝜋

𝜔𝑙
+ (−𝜔𝑘/𝜔𝑙)𝑛

• The slope (−𝜔𝑘/𝜔𝑙) determines the direction

• (−𝜔𝑘/𝜔𝑙) positive        the edge goes top-left to 

bottom-right

• (−𝜔𝑘/𝜔𝑙) negative        the edge goes bottom-

left to top-right

• (−𝜔𝑘/𝜔𝑙) zero          the edge is horizontal

• (−𝜔𝑘/𝜔𝑙) is infinity (i.e., 𝜔𝑙 = 0) edge is 

vertical



Fourier analysis in images

Intensity Image

Fourier Image

https://web.archive.org/web/20130513181427/http://sharp.bu.edu/~slehar/fourier/fourier.html

• The dot at the centre is the “zero frequency” term (the 

sum of the image):  𝑛,𝑚 𝑒−𝑖 0×𝑛+0×𝑚 ℎ(𝑛,𝑚)

• Why two dots off side? 



Why Two Dots?

https://web.archive.org/web/20130513181427/http://sharp.bu.edu/~slehar/fourier/fourier.html

• One for 𝑘, 𝑙 = 1,1
• One for 𝑘, 𝑙 = −1,−1
• Note: the gratings for those look the same for the real 

part

• Say F is a 2D Fourier transform of a real image f. Then:

• |F(u,v)| = |F(-u, -v)|
• (Since cos(x) = cos(-x), sin(-x) = -sin(x). Details: exercise)



Signals can be composed

+ =

More: http://www.cs.unm.edu/~brayer/vision/fourier.html

https://web.archive.org/web/20130513181427/http://sharp.bu.edu/~slehar/fourier/fourier.html



Man-made Scene



The FT of man-made scenes

• Edges have to be represented as sums of 

gratings, with the gratings in the same 

general direction as the edges
• Partly* explains the high magnitude of the FT along the n

and m axis in most outdoor images

• Other edges also need to be represented
• In the Colosseum photo on the previous slide, we have two 

edge directions that are not vertical or horizontal

• They correspond to the lines you see on the FT magnitude 

image (note: while in the photo (0,0) is on the top right and 

x and y increase going to the bottom-right, in the FT 

magnitude image, 



*Small print on the “+” pattern(aside, not covered in 

detail): Edge Effects

Two FTs of similar patterns



Aside, continued (not covered in detail)

• We treat the image as if it were tiling the 

entire plane, so if the left/right, top/bottom 

ends are different, we get “edge effects”



Can change spectrum, then reconstruct



Low Pass filtering

• Only keep the low frequencies, set the 

coefficients of the high frequencies to 0

• Similar to blurring with a Gaussian kernel



High Pass filtering

• Only keep the high frequencies, set the 

coefficients of the low frequencies to 0

• We’ll talk later how to implement this using 

filters



Log Magnitude

Strong Vertical Frequency

(Sharp Horizontal Edge)

Strong Horz. Frequency

(Sharp Vert. Edge)

Diagonal Frequencies

Low Frequencies



The Convolution Theorem

The greatest thing since sliced (banana) bread!

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg 

][F][F][F 111 hggh  



2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



The Ringing Artifact, Again

Gaussian Box filter



Gaussian Filtering

• The FT of a Gaussian(𝜎) is Gaussian(1/𝜎)
• You can prove it with integrals, or experimentally, or just 

trust me

• The Convolution Theorem gives us:



Box Filtering isn’t as nice

• The FT of a box filter is similar to what we 

saw for the step function: high frequencies 

remain



Fourier Transform Pairs



Low-pass, Band-pass, High-pass filters

low-pass:

Band-pass:



Edges in images



What does blurring take away?

original



What does blurring take away?

smoothed (5x5 Gaussian)



High-Pass filter

smoothed – original



Band-pass filtering

Laplacian Pyramid (subband images)
Created from Gaussian pyramid by subtraction

Gaussian Pyramid (low-pass images)



Da Vinci and Peripheral Vision



Leonardo playing with peripheral vision



Unsharp Masking
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Unsharp Masking

• The blurred image has all the low frequency 
components intact

• If we subtract the blurred image from the original, we 
only keep the high frequencies



Unsharp masking

• If in the original, a pixel is brighter than its neigbours, 
the difference image will be positive

• If in the original, a pixel is darker than its neigbours, 
the difference image will be negative

• Otherwise, the difference image is around 0

• So adding the difference image had little effect away 
from the edges, and will tend to exaggerate the edges

• That is called “sharpening:” the edges will become 
less blurry



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) (similar to DFT)



Using DCT in JPEG 

• The first coefficient B(0,0) is the DC 

component, the average intensity

• The top-left coeffs represent low frequencies, 

the bottom right represent high frequencies

• Store as much of the top left as you can



Hybrid Images

?

http://cvcl.mit.edu/hybrid_gallery/gallery.html


