Face Classification with Logistic Regression

Slides from:
Derek Hoiem *ESLII*, Friedman, Hastie and Tibshirani

SML310: Projects in Data Science, Fall 2019

Michael Guerzhoy

The Task: Supervised Learning

•Given a set of labelled examples (the *training set*), determine/predict the labels of a set of unlabelled examples (the *test set*)

```
•Training set:
```

```
Train Example 1: (x_1^{(1)}, x_2^{(1)}, \dots, x_m^{(1)}) Label: y^{(1)} Train Example 2: (x_1^{(2)}, x_2^{(2)}, \dots, x_m^{(2)}) Label: y^{(2)} ...

Train Example N: (x_1^{(N)}, x_2^{(N)}, \dots, x_m^{(N)}) Label: y^{(N)} •Test set:

Test Example 1: (x_1^{(N+1)}, x_2^{(N+1)}, \dots, x_m^{(N+1)}) Label: y^{(N+1)} Test Example 2: (x_1^{(N+2)}, x_2^{(N+2)}, \dots, x_m^{(N+2)}) Label: y^{(N+2)} ...

Test Example K: (x_1^{(N+K)}, x_2^{(N+K)}, \dots, x_m^{(N+K)}) Label: y^{(N+K)}
```

Machine Learning vs. Intro to Programming

• Intro to Programming *done badly*

```
def double_list(L):
    for e in L:
        e *= 2
    return L

>>> double_list([0, 0])
[0, 0]
>>> double_list([1, 2])
[1, 2]
```

Change the for to while?

Shotgun debugging

Change θ_2 to 1.3?

• Machine Learning done right

>>>
$$h_{(0,1.2,0.1)}([0, 0])$$
[0, 0]
>>> $h_{(0,1.2,0.1)}([1, 2])$
[1.3, 2.8]

$$h_{(\theta_1, \theta_2, \theta_3)}(x) = \theta_1 + \theta_2 x + \theta_3 x^2$$

Machine learning (kind of)

Images Vectors

Project 4 task

- Training set: 6 actors, with 100 64×64 photos of faces for each
- Test set: photos of faces of the same 6 actors
- Want to classify each face as one of ['Fran Drescher', 'America Ferrera', 'Kristin Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']

Multiclass Classification

$$z_k = \sigma \left(\sum_{j=1}^{4096} W^{(1,j,k)} x_j + b^{(1,k)} \right)$$

The transformation with σ is not necessary here, but will be useful later

Fitting the model

- Adjust the W's (4096×6 coefs) and b's (6 coefs)
 - Try to make it so that if

```
x is an image of actor 1, z is as close as possible to (1, 0, 0, 0, 0, 0) x is an image of actor 2, z is as close as possible to (0, 1, 0, 0, 0, 0) .....
```


Face recognition

- Compute the z for a new image x
- If z_k is the largest output, output name k

An interpretation

```
z_1 is large if W^{(1,*,1)} \cdot x is large z_2 is large if W^{(1,*,2)} \cdot x is large z_3 is large if W^{(1,*,3)} \cdot x is large .... W^{(1,*,1)}, W^{(1,*,2)}, ..., W^{(1,*,6)} are templates for the faces of actor 1, actor 2, ..., actor 6
```


Visualizing the parameters W

Connection to Logistic Regression

The structure we saw before is (for the appropriate cost function) Multinomial Logistic Regression. (If we have just one output, the procedure is Binomial Logistic regression)