
Understanding How Neural Networks See

SML201: Introduction to Data Science, Spring 2019
Michael Guerzhoy

Recent successes of neural networks

› Can recognize what object is in the a photo

› Can tell bad Go positions/shapes from good Go positions

› Cen tell a self-driving car where to go

› Can decide on what key to press to win at a video game by
looking at the screen

About this lecture

› A very brief introduction to artificial neural networks (ANNs)

– Why and how ANNs work

› A very brief introduction to Explainable AI

– Understanding how “black box” models work

“Review:” Supervised Machine Learning

› Training set:
• Training example 1: x(1) = 𝑥1

1 , 𝑥2
1 , … . , 𝑥𝑚

1
output: 𝑦(1)

• Training example 2: x(2) = 𝑥1
2 , 𝑥2

2 , … . , 𝑥𝑚
2

output: 𝑦(2)

…

• Training example N: x(N) = 𝑥1
𝑁 , 𝑥2

𝑁 , … . , 𝑥𝑚
𝑁

output: 𝑦(𝑁)

› Test set:
• Test Example 1: x(𝑁+1)= 𝑥1

𝑁+1 , 𝑥2
𝑁+1 , … . , 𝑥𝑚

𝑁+1
output: 𝑦(𝑁+1)

• Test Example 2: x(𝑁+2) = 𝑥1
𝑁+2 , 𝑥2

𝑁+2 , … . , 𝑥𝑚
𝑁+2

output: 𝑦(𝑁+2)

• …

• Test Example K: x(𝑁+𝐾)= 𝑥1
𝑁+𝐾 , 𝑥2

𝑁+𝐾 , … . , 𝑥𝑚
𝑁+𝐾

output: 𝑦(𝑁+𝐾)

• Goal: Find a 𝜃 such that ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for 𝑖 ∈ 1, … ,𝑁

• Hope: ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for any 𝑖

• For new input 𝑥, predict ℎ𝜃(𝑥)

Machine Learning vs. Intro to Programming

› Programming done badly

› Machine Learning done right

CountryMaxIncome <- function(gap):
return(min(gap$gdpPercap)

> CountryMaxIncome(gapminder)
10

>>> ℎ(0,1.2,0.1)([0, 0])

[0, 0]
>>> ℎ(0,1.2,0.1)([1, 2])

[1.3, 2.8]

Change the

min to max?

Change 𝜃2 to 1.3?

ℎ 𝜃1,𝜃2,𝜃3 𝑥 = 𝜃1 + 𝜃2𝑥 + 𝜃3𝑥
2

Shotgun debugging

Machine

learning

(kind of)

Sample ML task: Recognizing Justin Bieber

6

What Justin Bieber looks like to a computer

Images Vectors

60 60 255 255

60 60 255 255

60 60 255 255

128 128 128 128

60

60

255

255

60

60

255

255

60

60

255

255

128

128

128

128

The Face Recognition Task

› Training set:

– 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

› 𝑥(𝑖) is a k-dimensional vector consisting of the intensities of all the pixels in
in the i-th photo (20 × 20 photo → 𝑥(𝑖) is 400-dimensional)

› 𝑦(𝑖) is the label (i.e., name)

› Test phase:

– We have an input vector 𝑥, and want to assign a label 𝑦 to it

› Whose photo is it?

Face Recognition using 1-Nearest Neighbors (1NN)

– Training set: 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

– Input: 𝑥

– 1-Nearest Neighbor algorithm:

› Find the training photo/vector 𝑥(𝑖) that’s as “close” as possible to 𝑥, and
output the label 𝑦(𝑖)

10
Closest training image

to the input 𝑥
Output: Paul

Input 𝑥

Supervised Machine Learning

› Training set:
• Training example 1: x(1) = 𝑥1

1 , 𝑥2
1 , … . , 𝑥𝑚

1
output: 𝑦(1)

• Training example 2: x(2) = 𝑥1
2 , 𝑥2

2 , … . , 𝑥𝑚
2

output: 𝑦(2)

…

• Training example N: x(N) = 𝑥1
𝑁 , 𝑥2

𝑁 , … . , 𝑥𝑚
𝑁

output: 𝑦(𝑁)

› Test set:
• Test Example 1: x(𝑁+1)= 𝑥1

𝑁+1 , 𝑥2
𝑁+1 , … . , 𝑥𝑚

𝑁+1
output: 𝑦(𝑁+1)

• Test Example 2: x(𝑁+2) = 𝑥1
𝑁+2 , 𝑥2

𝑁+2 , … . , 𝑥𝑚
𝑁+2

output: 𝑦(𝑁+2)

• …

• Test Example K: x(𝑁+𝐾)= 𝑥1
𝑁+𝐾 , 𝑥2

𝑁+𝐾 , … . , 𝑥𝑚
𝑁+𝐾

output: 𝑦(𝑁+𝐾)

• Goal: Find a 𝜃 such that ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for 𝑖 ∈ 1, … ,𝑁

• Hope: ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for any 𝑖

• For new input 𝑥, predict ℎ𝜃(𝑥)

Are the two images 𝑎 and 𝑏 close?

› Key idea: think of the images as vectors

– Reminder: to turn an image into a vector, simply “flatten” all the
pixels into a 1D vector

› Is the distance between the endpoints of vectors 𝑎 and 𝑏
small?

𝑎 − 𝑏 = σ𝑖 𝑎𝑖 − 𝑏𝑖
2 small

› Is the cosine of the angle between the vectors 𝑎 and 𝑏
large?

cos 𝜃𝑎𝑏 =
𝑎⋅𝑏

𝑎 |𝑏|
=

σ𝑖 𝑎𝑖𝑏𝑖

σ𝑖 𝑎𝑖
2 σ𝑖 𝑏𝑖

2
large

› Is 𝑎 ⋅ 𝑏 = σ𝑖 𝑎𝑖𝑏𝑖 large?

– Assume 𝑎 ≈ 𝑏 ≈ 𝑐𝑜𝑛𝑠𝑡

By the law of cosines

SML310 Project 3 task

› Training set: 6 actors, with 100 64 × 64 photos of faces for
each

› Test set: photos of faces of the same 6 actors

› Want to classify each face as one of ['Fran Drescher',
'America Ferrera', 'Kristin Chenoweth', 'Alec Baldwin', 'Bill
Hader', 'Steve Carell']

The Simplest Possible Neural Network for
Face Recognition

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

𝑧𝑘 = 𝜎

𝑗=1

4096

𝑊 1,𝑗,𝑘 𝑥𝑗 + 𝑏 1,𝑘

= 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘
𝑥

𝜎(𝑥)

ℎ𝜃 = ℎ𝑊,𝑏

The transformation with 𝜎 is not necessary here, but will be useful

later

Training a neural network

› Adjust the W’s (4096 × 6 coefs) and b’s (6 coefs)

– Try to make it so that if
𝑥 is an image of actor 1, 𝑧 is as close as possible to (1, 0, 0, 0, 0, 0)
𝑥 is an image of actor 2, 𝑧 is as close as possible to (0, 1, 0, 0, 0, 0)

……

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

Face recognition

› Compute the z for a new image x

› If 𝑧𝑘 is the largest output, output name k

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

An interpretation

𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor
1, actor 2, …, actor 6

Actor 3 neuron activated:

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large

input vector

(flattened 64x64

Image)

𝑧3

𝑥1 … …𝑥20 𝑥4096… … … … … … …

𝑊(1,4096,3)

𝑏(1,3)

𝑊(1,20,3)

𝑊(1,1,3)
… ……

Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)

Deep Neural Networks: Introducing Hidden
Layers

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

input vector

(flattened

64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚)

K hidden

units

Why a hidden layer?

› Instead of checking whether 𝑥 looks like one of 6
templates, we’ll be checking whether 𝑥 looks like one of K
templates, for a large 𝐾
– If template 𝑘 (i.e., 𝑊(1,∗,𝑘)) looks like actor 6, 𝑊(2,𝑘,6) will be large

Recap: Face Recognition with ML

› 1-Nearest-Neighbor: match 𝑥 to all the images in
the training set

› 0-hidden-layer neural network*: match 𝑥 to
several templates, with one template per actor
–The templates work better than any individual

photo

› 1-hidden-layer neural network: match 𝑥 to 𝐾
templates
–The templates work better than any individual

photo
–More templates means better accuracy on the

training set

*A.K.A. multinomial logistic regression

** With minor modifications made to make this lecture clearer

Visualizing a One-Hidden-Layer NN

Deep Learning: More hidden layers!

ℎ1
(1) ℎ100

(1)

𝑥1 … …

… … … …

𝑥20 𝑥784

ℎ300
(1)

𝑊(0)

𝑊(1)

𝑜1 𝑜4 𝑜6
… …

ℎ1
(1) ℎ100

(1)… … … … ℎ300
(1)

ℎ1
(10) ℎ100

(10))… … … … ℎ300
(10)

… … … …

𝑊(10)

Templates for the input

(very simple shapes)

Templates for template

matchers (combinations

of very simple shapes)

Deep Neural Networks as a Model of
Computation

› Most people’s first instinct when building a face classifier is to write a
complicated computer program

› A deep neural network is a computer program:

h1 = f1(x)

h2 = f2(h1)

h3 = f3(h2)

…

h9 = f9(h8)

› Can think of every layer of a neural network as one step of a parallel
computation

› Features/templates are the functions that are applied to the previous
layers

› Learning features Learning what function to apply at step t of the
algorithm

24

Deep Neural Networks

› Can perform a wide range of computation

› Can be learned automatically
– (using gradient descent)

• Powerful but not (computer) learnable: Python
• Can’t make a learning algorithm that takes lots of inputs and

outputs and produces Python code that generates the outputs on
new inputs
• (But can do it with simpler languages!)

• Learnable but not powerful:
• Logistic regression
• Deep Neural Networks that aren’t deep enough

Graphic and idea by Ilya Sutskever

The Deep Learning Hypothesis

› Human perception is fast

– (Human) neurons fire at most 100 times a second

– Humans can solve simple perceptual tasks in 0.1 seconds

› So out neurons fire in a sequence of 10 times at most

› Success stories:

– Classifying images of objects

– Classifying Go positions as good or bad

Anything a human can do in 0.1 seconds, a big

10-layer neural network can do, too!

What are the hidden units doing?

What are the hidden units doing?

› Find the images in the dataset that activate the units the
most

› Let’s see some visualizations of neurons of a large deep
network trained to recognize objects in images

– The network classifies images as one of 1000 objects (sample
objects: toy poodle, flute, forklift, goldfish…)

– The network has 8 layers

– Note: more tricks were used in designing the networks than we
have time to mention. In particular, a convolutional architecture is
crucial

Units in Layer 3

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Units in Layer 4

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Units in Layer 5

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)

Which pixels are responsible for the output?

› For each pixel in a particular image ask:

– If I changed the pixel 𝑗 by a little bit, how would that influence the
output 𝑖?

– Equivalent to asking: what’s the gradient
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗

– We can visualize why a particular output was chosen by the

network by computing
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗
for every j, and displaying that as

an image (“saliency map”)

Gradient and Guided Backpropagation
Image I

∂Cat-Neuron

∂I

Guided Backpropagation

visualization

Graphic and idea by Andrej Karpathy

Why the gradient with respect to the input is
noisy

… …

Cat eye

at (200,

300)

Dog ear

at (180, 320)

CAT DOG

… … …

Pixel provides both

positive (via a cat

eye detection) and

negative (via

absence of cat eye

detection) evidence

for a cat in the

image

Guided backpropagation

 Instead of computing
𝜕𝑝𝑚

𝜕𝑥
,

only consider paths from 𝑥
to 𝑝𝑚 where the weights

are positive and all the

units are positive (and

greater than 0). Compute

this modified version of
𝜕𝑝𝑚

𝜕𝑥

 Only consider evidence for

neurons being active,

discard evidence for

neurons having to be not

active

Questions?

Application: Photo Orientation

› Detect the correct orientation of a consumer
photograph

› Input photo is rotated by 0°, 90°, 180° or 270°

› Help speed up the digitization of analog photos

› Need correctly oriented photos as inputs for other
systems

A Neural Network for Photo Orientation

224x224x64

112x112x128

56x56x256

28x28x512
7x7x51214x14x512

4096
224x224x3

4096

Convolution - ReLU Max pooling Fully Connected SoftmaxLayer legend:

0°

90°

180°

270°

4

Correctly Oriented Photos

› Display pixels that provide direct positive
evidence for 0°

Incorrectly-oriented photos

Questions?

