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Recent successes of neural networks

› Can recognize what object is in the a photo

› Can tell bad Go positions/shapes from good Go positions

› Cen tell a self-driving car where to go

› Can decide on what key to press to win at a video game by 
looking at the screen



About this lecture

› A very brief introduction to artificial neural networks (ANNs)

– Why and how ANNs work

› A very brief introduction to Explainable AI

– Understanding how “black box” models work



“Review:” Supervised Machine Learning

› Training set:
• Training example 1: x(1) = 𝑥1

1 , 𝑥2
1 , … . , 𝑥𝑚

1
output: 𝑦(1)

• Training example 2: x(2) = 𝑥1
2 , 𝑥2

2 , … . , 𝑥𝑚
2

output: 𝑦(2)

…

• Training example N: x(N) = 𝑥1
𝑁 , 𝑥2

𝑁 , … . , 𝑥𝑚
𝑁

output: 𝑦(𝑁)

› Test set:
• Test Example 1:      x(𝑁+1)= 𝑥1

𝑁+1 , 𝑥2
𝑁+1 , … . , 𝑥𝑚

𝑁+1
output: 𝑦(𝑁+1)

• Test Example 2:       x(𝑁+2) = 𝑥1
𝑁+2 , 𝑥2

𝑁+2 , … . , 𝑥𝑚
𝑁+2

output: 𝑦(𝑁+2)

• …

• Test Example K:      x(𝑁+𝐾)= 𝑥1
𝑁+𝐾 , 𝑥2

𝑁+𝐾 , … . , 𝑥𝑚
𝑁+𝐾

output: 𝑦(𝑁+𝐾)

• Goal: Find a 𝜃 such that ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for 𝑖 ∈ 1, … ,𝑁

• Hope: ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for any 𝑖

• For new input 𝑥, predict ℎ𝜃(𝑥)



Machine Learning vs. Intro to Programming

› Programming done badly

› Machine Learning done right

CountryMaxIncome <- function(gap):
return(min(gap$gdpPercap)

> CountryMaxIncome(gapminder)
10

>>> ℎ(0,1.2,0.1)([0, 0])

[0, 0]
>>> ℎ(0,1.2,0.1)([1, 2]) 

[1.3, 2.8]

Change the 

min to max?

Change 𝜃2 to 1.3?

ℎ 𝜃1,𝜃2,𝜃3 𝑥 = 𝜃1 + 𝜃2𝑥 + 𝜃3𝑥
2

Shotgun debugging

Machine 

learning 

(kind of)



Sample ML task: Recognizing Justin Bieber

6



What Justin Bieber looks like to a computer
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The Face Recognition Task

› Training set:

– 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

› 𝑥(𝑖) is a k-dimensional vector consisting of the intensities of all the pixels in 
in the i-th photo (20 × 20 photo → 𝑥(𝑖) is 400-dimensional)

› 𝑦(𝑖) is the label (i.e., name)

› Test phase:

– We have an input vector 𝑥, and want to assign a label 𝑦 to it

› Whose photo is it?



Face Recognition using 1-Nearest Neighbors (1NN)

– Training set: 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑁 , 𝑦 𝑁

– Input: 𝑥

– 1-Nearest Neighbor algorithm:

› Find the training photo/vector 𝑥(𝑖) that’s as “close” as possible to 𝑥, and 
output the label 𝑦(𝑖)

10
Closest training image 

to the input 𝑥
Output: Paul

Input 𝑥



Supervised Machine Learning

› Training set:
• Training example 1: x(1) = 𝑥1

1 , 𝑥2
1 , … . , 𝑥𝑚

1
output: 𝑦(1)

• Training example 2: x(2) = 𝑥1
2 , 𝑥2

2 , … . , 𝑥𝑚
2

output: 𝑦(2)

…

• Training example N: x(N) = 𝑥1
𝑁 , 𝑥2

𝑁 , … . , 𝑥𝑚
𝑁

output: 𝑦(𝑁)

› Test set:
• Test Example 1:      x(𝑁+1)= 𝑥1

𝑁+1 , 𝑥2
𝑁+1 , … . , 𝑥𝑚

𝑁+1
output: 𝑦(𝑁+1)

• Test Example 2:       x(𝑁+2) = 𝑥1
𝑁+2 , 𝑥2

𝑁+2 , … . , 𝑥𝑚
𝑁+2

output: 𝑦(𝑁+2)

• …

• Test Example K:      x(𝑁+𝐾)= 𝑥1
𝑁+𝐾 , 𝑥2

𝑁+𝐾 , … . , 𝑥𝑚
𝑁+𝐾

output: 𝑦(𝑁+𝐾)

• Goal: Find a 𝜃 such that ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for 𝑖 ∈ 1, … ,𝑁

• Hope: ℎ𝜃 𝑥 𝑖 ≈ 𝑦(𝑖) for any 𝑖

• For new input 𝑥, predict ℎ𝜃(𝑥)



Are the two images 𝑎 and 𝑏 close?

› Key idea: think of the images as vectors

– Reminder: to turn an image into a vector, simply “flatten” all the 
pixels into a 1D vector

› Is the distance between the endpoints of vectors 𝑎 and 𝑏
small?

𝑎 − 𝑏 = σ𝑖 𝑎𝑖 − 𝑏𝑖
2 small

› Is the cosine of the angle between the vectors 𝑎 and 𝑏
large?

cos 𝜃𝑎𝑏 =
𝑎⋅𝑏

𝑎 |𝑏|
=

σ𝑖 𝑎𝑖𝑏𝑖

σ𝑖 𝑎𝑖
2 σ𝑖 𝑏𝑖

2
large

› Is 𝑎 ⋅ 𝑏 = σ𝑖 𝑎𝑖𝑏𝑖 large?

– Assume 𝑎 ≈ 𝑏 ≈ 𝑐𝑜𝑛𝑠𝑡

By the law of cosines



SML310 Project 3 task

› Training set: 6 actors, with 100 64 × 64 photos of faces for 
each

› Test set: photos of faces of the same 6 actors

› Want to classify each face as one of ['Fran Drescher', 
'America Ferrera', 'Kristin Chenoweth', 'Alec Baldwin', 'Bill 
Hader', 'Steve Carell']



The Simplest Possible Neural Network for 
Face Recognition

outputs (one per actor)𝑧1

input vector 

(flattened 64x64 

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

𝑧𝑘 = 𝜎 ෍

𝑗=1

4096

𝑊 1,𝑗,𝑘 𝑥𝑗 + 𝑏 1,𝑘

= 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘
𝑥

𝜎(𝑥)

ℎ𝜃 = ℎ𝑊,𝑏

The transformation with 𝜎 is not necessary here, but will be useful 

later



Training a neural network

› Adjust the W’s (4096 × 6 coefs) and b’s (6 coefs) 

– Try to make it so that if 
𝑥 is an image of actor 1, 𝑧 is as close as possible to (1, 0, 0, 0, 0, 0)
𝑥 is an image of actor 2, 𝑧 is as close as possible to (0, 1, 0, 0, 0, 0)

……

outputs (one per actor)𝑧1

input vector 

(flattened 64x64 

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)



Face recognition

› Compute the z for a new image x

› If 𝑧𝑘 is the largest output, output name k

outputs (one per actor)𝑧1

input vector 

(flattened 64x64 

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)



An interpretation

𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor 
1, actor 2, …, actor 6

Actor 3 neuron activated: 

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large

input vector 

(flattened 64x64 

Image)

𝑧3

𝑥1 … …𝑥20 𝑥4096… … … … … … …

𝑊(1,4096,3)

𝑏(1,3)

𝑊(1,20,3)

𝑊(1,1,3)
… ……



Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)



Deep Neural Networks: Introducing Hidden 
Layers

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

input vector 

(flattened 

64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚 )

K hidden 

units



Why a hidden layer?

› Instead of checking whether 𝑥 looks like one of 6 
templates, we’ll be checking whether 𝑥 looks like one of K
templates, for a large 𝐾
– If template 𝑘 (i.e., 𝑊(1,∗,𝑘)) looks like actor 6, 𝑊(2,𝑘,6) will be large



Recap: Face Recognition with ML

› 1-Nearest-Neighbor: match 𝑥 to all the images in 
the training set

› 0-hidden-layer neural network*: match 𝑥 to 
several templates, with one template per actor
–The templates work better than any individual 

photo

› 1-hidden-layer neural network: match 𝑥 to 𝐾
templates
–The templates work better than any individual 

photo
–More templates means better accuracy on the 

training set

*A.K.A. multinomial logistic regression

** With minor modifications made to make this lecture clearer



Visualizing a One-Hidden-Layer NN



Deep Learning: More hidden layers!

ℎ1
(1) ℎ100

(1)

𝑥1 … …

… … … …

𝑥20 𝑥784

ℎ300
(1)

𝑊(0)

𝑊(1)

𝑜1 𝑜4 𝑜6
… …

ℎ1
(1) ℎ100

(1)… … … … ℎ300
(1)

ℎ1
(10) ℎ100

(10))… … … … ℎ300
(10)

… … … …

𝑊(10)

Templates for the input 

(very simple shapes)

Templates for template 

matchers (combinations 

of very simple shapes)



Deep Neural Networks as a Model of 
Computation

› Most people’s first instinct when building a face classifier is to write a 
complicated computer program

› A deep neural network is a computer program:

h1 = f1(x)

h2 = f2(h1)

h3 = f3(h2)

…

h9 = f9(h8)

› Can think of every layer of a neural network as one step of a parallel 
computation

› Features/templates are the functions that are applied to the previous 
layers

› Learning features  Learning what function to apply at step t of the 
algorithm

24



Deep Neural Networks

› Can perform a wide range of computation

› Can be learned automatically
– (using gradient descent)

• Powerful but not (computer) learnable: Python
• Can’t make a learning algorithm that takes lots of inputs and 

outputs and produces Python code that generates the outputs on 
new inputs
• (But can do it with simpler languages!)

• Learnable but not powerful:
• Logistic regression
• Deep Neural Networks that aren’t deep enough

Graphic and idea by Ilya Sutskever



The Deep Learning Hypothesis

› Human perception is fast

– (Human) neurons fire at most 100 times a second

– Humans can solve simple perceptual tasks in 0.1 seconds

› So out neurons fire in a sequence of 10 times at most

› Success stories:

– Classifying images of objects

– Classifying Go positions as good or bad

Anything a human can do in 0.1 seconds, a big 

10-layer neural network can do, too!



What are the hidden units doing?



What are the hidden units doing?

› Find the images in the dataset that activate the units the 
most

› Let’s see some visualizations of neurons of a large deep 
network trained to recognize objects in images

– The network classifies images as one of 1000 objects (sample 
objects: toy poodle, flute, forklift, goldfish…)

– The network has 8 layers

– Note: more tricks were used in designing the networks than we 
have time to mention. In particular, a convolutional architecture is 
crucial



Units in Layer 3

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 4

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Units in Layer 5

Matthew Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks” (ECCV 2014)



Which pixels are responsible for the output?

› For each pixel in a particular image ask:

– If I changed the pixel 𝑗 by a little bit, how would that influence the  
output 𝑖?

– Equivalent to asking: what’s the gradient 
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗

– We can visualize why a particular output was chosen by the 

network by computing 
𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝜕𝑖𝑛𝑝𝑢𝑡𝑗
for every j, and displaying that as 

an image (“saliency map”)



Gradient and Guided Backpropagation
Image I

∂Cat-Neuron

∂I

Guided Backpropagation 

visualization

Graphic and idea by Andrej Karpathy



Why the gradient with respect to the input is 
noisy

… …

Cat eye

at (200, 

300)

Dog ear

at (180, 320)

CAT DOG

… … …

Pixel provides both 

positive (via a cat 

eye detection) and 

negative (via 

absence of cat eye 

detection) evidence 

for a cat in the 

image



Guided backpropagation

 Instead of computing  
𝜕𝑝𝑚

𝜕𝑥
, 

only consider paths from 𝑥
to 𝑝𝑚 where the weights 

are positive and all the 

units are positive (and 

greater than 0). Compute 

this modified version of 
𝜕𝑝𝑚

𝜕𝑥

 Only consider evidence for 

neurons being active, 

discard evidence for 

neurons having to be not 

active



Questions?



Application: Photo Orientation

› Detect the correct orientation of a consumer 
photograph

› Input photo is rotated by 0°, 90°, 180° or 270°

› Help speed up the digitization of analog photos

› Need correctly oriented photos as inputs for other 
systems



A Neural Network for Photo Orientation

224x224x64

112x112x128

56x56x256

28x28x512
7x7x51214x14x512

4096
224x224x3

4096

Convolution - ReLU Max pooling Fully Connected SoftmaxLayer legend:

0°

90°

180°

270°

4



Correctly Oriented Photos

› Display pixels that provide direct positive 
evidence for 0°







Incorrectly-oriented photos









Questions?


