Understanding How Neural Networks See

SML201: Introduction to Data Science, Spring 2019
Michael Guerzhoy

Recent successes of neural networks

, Can recognize what object is in the a photo
, Can tell bad Go positions/shapes from good Go positions
, Cen tell a self-driving car where to go
, Can decide on what key to press to win at a video game by looking at the screen

About this lecture

, A very brief introduction to artificial neural networks (ANNs)

- Why and how ANNs work
, A very brief introduction to Explainable AI
- Understanding how "black box" models work

"Review:" Supervised Machine Learning

, Training set:

- Training example $1: \mathrm{x}^{(1)}=\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{m}^{(1)}\right)$
- Training example 2: $\mathrm{x}^{(2)}=\left(x_{1}^{(2)}, x_{2}^{(2)}, \ldots, x_{m}^{(2)}\right)$
- Training example $\mathrm{N}: \mathrm{x}^{(\mathrm{N})}=\left(x_{1}^{(N)}, x_{2}^{(N)}, \ldots, x_{m}^{(N)}\right)$
output: $y^{(N)}$

) Test set:

- Test Example 1: $\mathrm{x}^{(N+1)}=\left(x_{1}^{(N+1)}, x_{2}^{(N+1)}, \ldots, x_{m}^{(N+1)}\right)$ output: $y^{(N+1)}$
- Test Example 2: $\mathrm{x}^{(N+2)}=\left(x_{1}^{(N+2)}, x_{2}^{(N+2)}, \ldots ., x_{m}^{(N+2)}\right)$ output: $y^{(N+2)}$
...
- Test Example K: $\mathrm{x}^{(N+K)}=\left(x_{1}^{(N+K)}, x_{2}^{(N+K)}, \ldots ., x_{m}^{(N+K)}\right)$ output: $y^{(N+K)}$
- Goal: Find a θ such that $h_{\theta}\left(x^{(i)}\right) \approx y^{(i)}$ for $i \in 1, \ldots, N$
- Hope: $h_{\theta}\left(x^{(i)}\right) \approx y^{(i)}$ for any i
- For new input x, predict $h_{\theta}(x)$

Machine Learning vs. Intro to Programming

, Programming done badly
CountryMaxIncome <- function(gap): return(min(gap\$gdpPercap)
> CountryMaxIncome(gapminder) 10
, Machine Learning done right

```
>>> h}\mp@subsup{h}{(0,1.2,0.1)}{}([0, 0]
[0, 0]
>>> h(0,1.2,0.1)
[1.3, 2.8]
```

$h_{\left(\theta_{1}, \theta_{2}, \theta_{3}\right)}(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}$

Sample ML task: Recognizing Justin Bieber

What Justin Bieber looks like to a computer

Images \longrightarrow Vectors

60
60
255
255
60
60
255
255
60
60
255
255
128
128
128
128

The Face Recognition Task

, Training set:
$-\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
, $x^{(i)}$ is a k -dimensional vector consisting of the intensities of all the pixels in in the i-th photo (20×20 photo $\rightarrow x^{(i)}$ is 400 -dimensional)
, $y^{(i)}$ is the label (i.e., name)
, Test phase:

- We have an input vector x, and want to assign a label y to it
, Whose photo is it?

Face Recognition using 1-Nearest Neighbors (1NN)

- Training set: $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
- Input: x
- 1-Nearest Neighbor algorithm:
, Find the training photo/vector $x^{(i)}$ that's as "close" as possible to x, and output the label $y^{(i)}$

Input x

Closest training image
to the input x

Supervised Machine Learning

, Training set:

- Training example $1: \mathrm{x}^{(1)}=\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{m}^{(1)}\right)$
- Training example 2: $\mathrm{x}^{(2)}=\left(x_{1}^{(2)}, x_{2}^{(2)}, \ldots, x_{m}^{(2)}\right)$
- Training example $\mathrm{N}: \mathrm{x}^{(\mathrm{N})}=\left(x_{1}^{(N)}, x_{2}^{(N)}, \ldots, x_{m}^{(N)}\right)$
output: $y^{(N)}$

) Test set:

- Test Example 1: $\mathrm{x}^{(N+1)}=\left(x_{1}^{(N+1)}, x_{2}^{(N+1)}, \ldots ., x_{m}^{(N+1)}\right)$ output: $y^{(N+1)}$
- Test Example 2: $\mathrm{x}^{(N+2)}=\left(x_{1}^{(N+2)}, x_{2}^{(N+2)}, \ldots ., x_{m}^{(N+2)}\right)$ output: $y^{(N+2)}$
...
- Test Example K: $\mathrm{x}^{(N+K)}=\left(x_{1}^{(N+K)}, x_{2}^{(N+K)}, \ldots, x_{m}^{(N+K)}\right)$ output: $y^{(N+K)}$
- Goal: Find a θ such that $h_{\theta}\left(x^{(i)}\right) \approx y^{(i)}$ for $i \in 1, \ldots, N$
- Hope: $h_{\theta}\left(x^{(i)}\right) \approx y^{(i)}$ for any i
- For new input x, predict $h_{\theta}(x)$

Are the two images a and b close?

, Key idea: think of the images as vectors

- Reminder: to turn an image into a vector, simply "flatten" all the pixels into a 1D vector
) Is the distance between the endpoints of vectors a and b small?

$$
|a-b|=\sqrt{\sum_{i}\left(a_{i}-b_{i}\right)^{2}} \text { small }
$$

) Is the cosine of the angle between the vectors a and b large? By the law of cosines $\cos \theta_{a b}=\frac{a \cdot b}{|a||b|}=\frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}} \operatorname{large}$
, Is $a \cdot b=\sum_{i} a_{i} b_{i}$ large?

- Assume $|a| \approx|b| \approx$ const

SML310 Project 3 task

, Training set: 6 actors, with 10064×64 photos of faces for each
, Test set: photos of faces of the same 6 actors
, Want to classify each face as one of ['Fran Drescher', 'America Ferrera', 'Kristin Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']

The Simplest Possible Neural Network for Face Recognition

$$
\begin{aligned}
& z_{k}=\sigma\left(\sum_{j=1}^{4096} W^{(1, j, k)} x_{j}+b^{(1, k)}\right) \\
& =\sigma\left(W^{(1, *, k)} \cdot x+b^{(1, k)}\right)
\end{aligned}
$$

$$
h_{\theta}=h_{W, b}
$$

The transformation with σ is not necessary here, but will be useful later

Training a neural network

, Adjust the W's (4096×6 coefs) and b's (6 coefs)

- Try to make it so that if x is an image of actor $1, z$ is as close as possible to ($1,0,0,0,0,0$) x is an image of actor $2, z$ is as close as possible to ($0,1,0,0,0,0$)

Face recognition

, Compute the z for a new image x
, If z_{k} is the largest output, output name k

An interpretation

z_{1} is large if $W^{(1, *, 1)} \cdot x$ is large z_{2} is large if $W^{(1, *, 2)} \cdot x$ is large z_{3} is large if $W^{(1, *, 3)} \cdot x$ is large
$W^{(1, *, 1)}, W^{(1, *, 2)}, \ldots, W^{(1, *, 6)}$ are templates for the faces of actor 1 , actor $2, \ldots$, actor 6

Visualizing the parameters W

Baldwin
$W^{(1, *, 1)}$

Carrel
$W^{(1, *, 2)}$

Hader
$W^{(1, *, 3)}$

Ferrera
$W^{(1, *, 4)}$

Drescher
$W^{(1, *, 5)}$

Chenoweth $W^{(1, *, 6)}$

Deep Neural Networks: Introducing Hidden Layers

Why a hidden layer?

, Instead of checking whether x looks like one of 6 templates, we'll be checking whether x looks like one of K templates, for a large K

- If template k (i.e., $W^{(1, *, k)}$) looks like actor $6, W^{(2, k, 6)}$ will be large

Recap: Face Recognition with ML

) 1-Nearest-Neighbor: match x to all the images in the training set
>0-hidden-layer neural network*: match x to several templates, with one template per actor
-The templates work better than any individual photo
, 1-hidden-layer neural network: match x to K templates
-The templates work better than any individual photo
-More templates means better accuracy on the training set
*A.K.A. multinomial logistic regression
** With minor modifications made to make this lecture clearer

Visualizing a One-Hidden-Layer NN

Deep Learning: More hidden layers!

Deep Neural Networks as a Model of Computation

, Most people's first instinct when building a face classifier is to write a complicated computer program
, A deep neural network is a computer program:

$$
\begin{aligned}
& h 1=f 1(x) \\
& h 2=f 2(h 1) \\
& h 3=f 3(h 2) \\
& \ldots \\
& h 9=f 9(h 8)
\end{aligned}
$$

, Can think of every layer of a neural network as one step of a parallel computation
, Features/templates are the functions that are applied to the previous layers
> Learning features \Leftrightarrow Learning what function to apply at step t of the algorithm

Deep Neural Networks

, Can perform a wide range of computation
, Can be learned automatically

- (using gradient descent)

- Powerful but not (computer) learnable: Python
- Can't make a learning algorithm that takes lots of inputs and outputs and produces Python code that generates the outputs on new inputs
- (But can do it with simpler languages!)
- Learnable but not powerful:
- Logistic regression
- Deep Neural Networks that aren't deep enough

The Deep Learning Hypothesis

, Human perception is fast

- (Human) neurons fire at most 100 times a second
- Humans can solve simple perceptual tasks in 0.1 seconds
, So out neurons fire in a sequence of 10 times at most

> Anything a human can do in 0.1 seconds, a big 10 -layer neural network can do, too!
, Success stories:

- Classifying images of objects
- Classifying Go positions as good or bad

What are the hidden units doing?

What are the hidden units doing?

, Find the images in the dataset that activate the units the most
, Let's see some visualizations of neurons of a large deep network trained to recognize objects in images

- The network classifies images as one of 1000 objects (sample objects: toy poodle, flute, forklift, goldfish...)
- The network has 8 layers
- Note: more tricks were used in designing the networks than we have time to mention. In particular, a convolutional architecture is crucial

Units in Layer 3

Matthew Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks" (ECCV 2014)

Units in Layer 4

Matthew Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks" (ECCV 2014)

Units in Layer 5

Matthew Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks" (ECCV 2014)

Which pixels are responsible for the output?

, For each pixel in a particular image ask:

- If I changed the pixel j by a little bit, how would that influence the output i ?
- Equivalent to asking: what's the gradient $\frac{\text { ooutput }_{i}}{\text { dinput }_{j}}$
- We can visualize why a particular output was chosen by the network by computing $\frac{\text { ooutput }_{i}}{\text { inpput }_{j}}$ for every j , and displaying that as an image ("saliency map")

Gradient and Guided Backpropagation

Guided Backpropagation visualization

Why the gradient with respect to the input is noisy

Guided backpropagation

$>$ Instead of computing $\frac{\partial p_{m}}{\partial x}$, only consider paths from x to p_{m} where the weights are positive and all the units are positive (and greater than 0). Compute this modified version of $\frac{\partial p_{m}}{\partial x}$
> Only consider evidence for neurons being active, discard evidence for neurons having to be not active

Application: Photo Orientation

, Detect the correct orientation of a consumer photograph
, Input photo is rotated by $0^{\circ}, 90^{\circ}, 180^{\circ}$ or 270°
, Help speed up the digitization of analog photos
, Need correctly oriented photos as inputs for other systems

0°

90°

180°

270°

A Neural Network for Photo Orientation

Correctly Oriented Photos

, Display pixels that provide direct positive evidence for 0°

Incorrectly-oriented photos

