Predictive Modelling I

SML201: Introduction to Data Science, Spring 2019 Michael Guerzhoy

Linear regression

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)
$x^{(1)} = 2104$	$y^{(1)} = 460$
$x^{(2)} = 1416$	$y^{(2)} = 232$
$x^{(3)} = 1534$	$y^{(2)} = 315$
$x^{(4)} = 852$	$y^{(2)} = 178$
•••	•••

Notation:

m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

- Equation for the "best" green line: price = $a_0 + a_1 size$
- Prediction for a new size x: $price(x) = a_0 + a_1 x$
- We take "best" to mean that on average, our predictions are not far off

Cost functions

• If the correct price is $y^{(i)}$ and we predicted $(a_0 + a_1 x^{(i)})$, we are off by

$$|y^{(i)} - (a_o + a_1 x^{(i)})|$$
 ("error")

• If we square this quantity, we still have a measure of how far off we are

$$\left(y^{(i)} - \left(a_o + a_1 x^{(i)}\right)\right)^2$$
 ("squared error")

• Overall, we will be off (in terms of squared errors) by $\sum_{i=1}^{m} \left(y^{(i)} - \left(a_o + a_1 x^{(i)} \right) \right)^2$

Simple Linear Regression

• Find the a_0 and a_1 such that

$$\sum_{i=1}^{m} \left(y^{(i)} - \left(a_o + a_1 x^{(i)} \right) \right)^2 \text{ is as small as possible}$$

 Graphically, roughly corresponds to "draw the best line through the scatterplot"

Multiple Linear Regression

- *n* quantities per case
- Find a_0, a_1, \dots, a_n such that

$$\sum_{i=1}^{m} \left(y^{(i)} - \left(a_o + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)} \right) \right)^2 \text{ is small}$$

Transforming inputs

Seems better to predict lifeExp using a new variable, log(*gdpPercap*)

Content from Kieran Healy, Data Visualization

(switch to R)

Categorical variables

- Continuous variables are numbers
 - Number, size, or weight of something
 - If x = 19 and x = 21 make sense, like x = 20 would make sense too
- Categorical variables indicate categories
 - Country, Continent, ...
 - Cannot put continents on a single scale

Predicting with categorical variables

• Suppose we are trying to predict *y* using one categorical variable (e.g., continent) which has *k* possible categories (e.g., Cont1, Cont2, ..., Cont5)

•
$$y^{(i)} \approx a_{1,0} + a_{1,1}I_{i,1} + a_{1,2}I_{i,2} + \dots + a_{1,k-1}I_{i,k-1}$$

• $I_{i,1} = \begin{cases} 1, if \ the \ i - th \ row \ contains \ Cont1 \\ 0, otherwise \end{cases}$
• $I_{i,2} = \begin{cases} 1, if \ the \ i - th \ row \ contains \ Cont2 \\ 0, otherwise \end{cases}$

- Note: if the i-th point is Contk, then the prediction is a_0
 - Potentially different predictions for each continent, despite the fact that we didn't include $I_{i,k}$

(Switch to R)

Titanic Survival Case Study

- The RMS *Titanic*
 - British passenger liner
 - Collided with an iceberg during her maiden voyage
 - 2224 people aboard, 710 survived
- People on board
 - 1st class, 2nd class, 3rd class passengers (price of ticker + social class played a role)
 - Different ages, genders

Predicting Survival

- Trying to predict a categorical variable (died/ survived)
- Convert (arbitrarily) "died" to 0 and "survived" to 1
- But $a_o + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)}$ could be any real number
- Solution: compute $p^{(i)} = \sigma(a_o + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)})$

Inputs can be in $(-\infty, \infty)$, outputs will always be in (0, 1)

Logistic regression: prediction

$$p^{(i)} = \sigma(a_o + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)})$$

- $0 < p^{(i)} < 1$
- Interpret $p^{(i)}$ as the probability that the variable that we are predicting (i.e., $y^{(i)}$) is 1
 - For now, think of a probability is a number between 0 and 1 where 0 indicates that the event will not happen and 1 indicates that the event will happen.

(Switch to R)

Logistic regression: cost function

- For linear regression, we had $\sum_{i=1}^{m} \left(y^{(i)} - \left(a_o + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \dots + a_n x_n^{(i)} \right) \right)^2 = \sum_{i=1}^{m} \left(y^{(i)} - pred(x^{(i)}) \right)^2$
- The cost is small if the predictions are close to the actual y's
- For logistic regression:

$$-\sum_{i} (y^{(i)} \log p^{(i)} + (1 - y^{(i)}) \log(1 - p^{(i)}))$$

- Idea: the cost is small if the p's are close to the y's
- Won't go into detail here