
UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, DECEMBER 2016

DURATION: 21/2 hours

CSC180H1F — Introduction to Computer Programming

Calculator Type: None
Exam Type: D

Aids allowed: reference sheet distributed with the exam
Examiner(s): M. Guerzhoy

Student Number:

Family Name(s):

Given Name(s):

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 10 questions on 28 pages (in-
cluding this one), printed on both sides of the paper. When you receive the
signal to start, please make sure that your copy is complete, and fill in the
identification section above.

Answer each question directly on this paper, in the space provided, and
use the reverse side of the previous page for rough work. If you need more
space for one of your solutions, use the reverse side of a page or the pages at
the end of the exam and indicate clearly the part of your work that should
be marked.

Write up your solutions carefully! Comments and docstrings are not
required to receive full marks, except where explicitly indicated otherwise.
However, they may help us mark your answers, and part marks might be
given for partial solutions with comments clearly indicating what the missing
parts should accomplish.

When you are asked to write code, no error checking is required: you
may assume that all user input and argument values are valid, except where
explicitly indicated otherwise.

Use the Python 3 programming language. You may not import any
module except math, unless otherwise specified.

A mark of at least 40% (after adjustment, if there is an adjustment)
on this exam is required to obtain a passing grade in the course.

Marking Guide

1: / 15

2: / 15

3: / 15

4: / 5

5: / 10

6: / 8

7: / 8

8: / 7

9: / 10

10: / 7

TOTAL: /100

Page 1 of 28 Good Luck! over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 2 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 1. [15 marks]

Part (a) [12 marks]

Write a function with the signature insert(L, e) which takes in a list of floats L, which is sorted in
non-decreasing order, and returns a new list which is also sorted in non-decreasing order, and contains all
the elements of L as well as the float e. Here are some examples:

insert([3.0, 4.0, 5.0], 3.5) should return [3.0, 3.5, 4.0, 5.0].
insert([2.0, 5.0], 7.0) should return [2.0, 5.0, 7.0].
insert([], 42.0) should return [42.0].

Part (b) [3 marks]

What is the tight asymptotic bound on the worst-case runtime complexity of the function you wrote in
Part (a)? Use Big O notation.

Page 3 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 4 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 2. [15 marks]

Santa wants to select gifts for an EngSci student. Santa has two dictionaries: a dictionary that records the
rating of how good a gift would be for the student (on a scale of 1-5), and a dictionary that records the
rating of how much the student wants the gift (on a scale of 1-5). The rating of a gift which is not
in either of the dictionaries is considered to be 0. Santa wants to select the gifts with the maximal
possible combined rating, where the combined rating is the sum of the rating of how good the gift would
be for the student and the rating of how much the student wants the gift. For example, the dictionaries
can be:

good_ratings = {"Calc textbook": 5, "iPhone": 1, "Alarm clock": 4, "Notebooks": 4}

want_ratings = {"iPhone": 4, "A+ in CSC": 5, "Calc textbook": 4, "Notebooks": 5}

Here, the gifts Santa wants to select are "Calc textbook" and "Notebooks", since the combined rating
for them is 5+4=9, larger than any other one. The combined rating of "Alarm clock" is 4+0=4.

Write a function with the signature select_gifts(good_ratings, want_ratings) that returns a list
of all the gifts which have the highest combined rating of all the gifts, sorted in alphabetical order.

For example, for good_ratings and want_ratings as defined above,
select_gifts(good_ratings, want_ratings) should return ["Calc textbook", "Notebooks"].

def select_gifts(good_ratings, want_ratings):

Page 5 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 6 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 3. [15 marks]

In Python, you can use a list of lists to store a matrix, with each inner list representing a row. For example,
you can store the matrix (

5 6 7
0 −3 5

)
by storing each row as a list: M = [[5, 6, 7], [0, -3, 5]].

Complete the following function. The function takes in a matrix M in a list-of-lists format. The matrix
returns the transposed version of M, in a list-of-lists format. For example,

transpose([[5, 6, 7], [0, -3, 5]]) should return [[5, 0], [6, -3], [7, 5]].

Page 7 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 8 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 4. [5 marks]

Write a recursive function with the signature max_rec(L) which takes in a list of ints L, and returns the
largest element in the list. You may not use loops, global variables, or Python’s max(), sorted() and
sort() functions. You may use slicing.

For example, max_rec([103, 180, 101, 102, 180]) should return 180.

def max_rec(L):

Page 9 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 10 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 5. [10 marks]

Write a recursive function with the signature is_fib(L) which takes in a list of ints L, and returns True
if L is the start of the Fibonacci sequence, and False otherwise. For example:

is_fib([1, 1, 2, 3, 5]) should return True.
is_fib([1, 1, 2, 3, 5, 8, 13]) should return True.
is_fib([5, 8, 13]) should return False.
is_fib([1, 1, 1]) should return False.
is_fib([]) should return True.
You may not use helper functions, loops or global variables. You may use slicing.
Reminder: fib(n + 2) = fib(n + 1) + fib(n), fib(1) = fib(2) = 1.

def is_fib(L):

Page 11 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 12 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 6. [8 marks]

Each of the subquestions in this question contains a piece of code. Treat each piece of code independently
(i.e., code in one question is not related to code in another), and write the expected output for each
piece of code. If the code produces an error, write down the output that the code prints before the error
is encountered, and then write “ERROR.” You do not have to specify what kind of error it is.

Part (a) [2 marks]

A = [[1, 2], [3, 4]]

A[0] = A[1]

B = A[:][0]

B[0] = 5

print(A)

Part (b) [2 marks]

def f():

L[0] = 5

L = [1, 2]

print(f(L))

print(L)

Part (c) [2 marks]

def f(L, M):

L = M

L[0] = 3

M = [1, 2]

L = [3, 4]

f(L, M)

print(M[0])

Part (d) [2 marks]

s1 = "HO HO HO"

s2 = s1

s1 = "Happy Holidays!"

print(s2)

Page 13 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 14 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 7. [8 marks]

The left-hand column in the table below contains different pieces of code that work with integer n. In the
right-hand column, give the asymptotic tight upper bound on the worst-case runtime complexity of each
piece of code, using Big O notation. Assume that arithmetic operations such as + and ** take contstant
time.

Code Complexity

total, i = 0.0, 0

for i in range(n):

for j in range(i//2):

total += i

i, j, sum = 1, 1, 0

while i < n**3:

while j < n:

sum = sum + i

j += 1

i += n

def f(n):

if n == 0:

return 1

return f(n//2) + f(n//2)

if __name__ == "__main__":

f(n)

def f(n):

i, total = 0, 0.0

while (i < n) and ((i % 10000) != 0):

total += i

i += 1

if __name__ == "__main__":

f(n)

Page 15 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 16 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 8. [7 marks]

Consider the following code

def mystery_helper(L, k):

p = max(L[0], L[-1])

L1 = []

L2 = []

for e in L:

if e < p:

L1.append(e)

else:

L2.append(e)

if len(L1) > k:

return mystery_helper(L1, k)

elif len(L1) < k:

return mystery_helper(L2, k-len(L1))

else:

return p

def mystery(L):

return mystery_helper(L, len(L)//2)

Part (a) [4 marks]

State clearly and concisely what mystery_helper(L, k) returns.

Page 17 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 18 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Part (b) [3 marks]

What is the tight asymptotic upper bound on the worst-case runtime complexity of mystery(L), where
n = len(L)? Use Big O notation. Explain how you got your answer to this subquestion. You may assume
that L is a list of floats.

Page 19 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 20 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 9. [10 marks]

A timestamp is a tuple consisting of two integers, with the first one denoting the hour in the day (between 0
and 23), and the second one denoting the minute (between 0 and 59). The timestamp (5, 10) corresponds
to 5:10AM, the timestamp (13, 25) corresponds to 1:25PM, and so on. Write a function with the signature
sorted_timestamps(timestamps) that takes in a list of timestamps, and returns a sorted version of that
list, with the sorting done from earlier to later timestamps. The function must run in O(n) time,
where n = len(timestamps). For example,

sorted_timestamps([(5, 10), (2, 40), (22, 59), (5, 10)])

should return [(2, 40), (5, 10), (5, 10), (22, 59)].

def sorted_timestamps(timestamps):

Page 21 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 22 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Question 10. [7 marks]

We can use a dictionary to record who is friends with whom by recording the lists of friends in a dictionary.
For example:

friends = {"Carl Gauss": ["Isaac Newton", "Gottfried Leibniz", "Charles Babbage"],

"Gottfried Leibniz": ["Carl Gauss"],

"Isaac Newton": ["Carl Gauss", "Charles Babbage"],

"Ada Lovelace": ["Charles Babbage", "Michael Faraday"]}

"Charles Babbage": ["Isaac Newton", "Carl Gauss", "Ada Lovelace"],

"Michael Faraday"" ["Ada Lovelace"] }

Here, Carl Gauss is friends with Isaac Newton, Gottfried Leibniz, and Charles Babbage. Assume that
friendships are symmetric, so that if X is friends with Y, then it’s guaranteed that Y is friends with X. A
clique is defined as a group of friends where everyone is friends with everyone. For example, Carl Gauss,
Isaac Newton, and Charles Babbage form a clique in the example above, since all three are friends with
each other. Ada Lovelace and Michael Faraday also form a clique.

Write the function max_clique(friends), which takes in a dictionary in the format above, and returns
the largest clique that can be found, as a list. (If there are several such cliques, return one of them.) For ex-
ample, the largest clique in the example above is ["Carl Gauss", "Isaac Newton", "Charles Babbage"],
since there is no clique of size larger than 3.

def max_clique(friends):

Page 23 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 24 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Extra space for solutions

Page 25 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 26 of 28 cont’d. . .

DECEMBER 2016 Final Examination CSC 180 H1F

Extra space for solutions

Page 27 of 28 Student #: over. . .

CSC 180 H1F Final Examination DECEMBER 2016

PLEASE WRITE NOTHING ON THIS PAGE

Page 28 of 28 Total Marks = 100 End of Final Examination

