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Question 1. [15 marks]

Part (a) [12 marks]

Write a function with the signature insert(L, e) which takes in a list of floats L, which is sorted in
non-decreasing order, and returns a new list which is also sorted in non-decreasing order, and contains all
the elements of L as well as the float e. Here are some examples:

insert([3.0, 4.0, 5.0], 3.5) should return [3.0, 3.5, 4.0, 5.0].
insert([2.0, 5.0], 7.0) should return [2.0, 5.0, 7.0].
insert([], 42.0) should return [42.0].

Part (b) [3 marks]

What is the tight asymptotic bound on the worst-case runtime complexity of the function you wrote in
Part (a)? Use Big O notation.
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Question 2. [15 marks]

Santa wants to select gifts for an EngSci student. Santa has two dictionaries: a dictionary that records the
rating of how good a gift would be for the student (on a scale of 1-5), and a dictionary that records the
rating of how much the student wants the gift (on a scale of 1-5). The rating of a gift which is not
in either of the dictionaries is considered to be 0. Santa wants to select the gifts with the maximal
possible combined rating, where the combined rating is the sum of the rating of how good the gift would
be for the student and the rating of how much the student wants the gift. For example, the dictionaries
can be:

good_ratings = {"Calc textbook": 5, "iPhone": 1, "Alarm clock": 4, "Notebooks": 4}

want_ratings = {"iPhone": 4, "A+ in CSC": 5, "Calc textbook": 4, "Notebooks": 5}

Here, the gifts Santa wants to select are "Calc textbook" and "Notebooks", since the combined rating
for them is 5+4=9, larger than any other one. The combined rating of "Alarm clock" is 4+0=4.

Write a function with the signature select_gifts(good_ratings, want_ratings) that returns a list
of all the gifts which have the highest combined rating of all the gifts, sorted in alphabetical order.

For example, for good_ratings and want_ratings as defined above,
select_gifts(good_ratings, want_ratings) should return ["Calc textbook", "Notebooks"].

def select_gifts(good_ratings, want_ratings):
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Question 3. [15 marks]

In Python, you can use a list of lists to store a matrix, with each inner list representing a row. For example,
you can store the matrix (

5 6 7
0 −3 5

)
by storing each row as a list: M = [[5, 6, 7], [0, -3, 5]].

Complete the following function. The function takes in a matrix M in a list-of-lists format. The matrix
returns the transposed version of M, in a list-of-lists format. For example,

transpose([[5, 6, 7], [0, -3, 5]]) should return [[5, 0], [6, -3], [7, 5]].
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Question 4. [5 marks]

Write a recursive function with the signature max_rec(L) which takes in a list of ints L, and returns the
largest element in the list. You may not use loops, global variables, or Python’s max(), sorted() and
sort() functions. You may use slicing.

For example, max_rec([103, 180, 101, 102, 180]) should return 180.

def max_rec(L):
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Question 5. [10 marks]

Write a recursive function with the signature is_fib(L) which takes in a list of ints L, and returns True
if L is the start of the Fibonacci sequence, and False otherwise. For example:

is_fib([1, 1, 2, 3, 5]) should return True.
is_fib([1, 1, 2, 3, 5, 8, 13]) should return True.
is_fib([5, 8, 13]) should return False.
is_fib([1, 1, 1]) should return False.
is_fib([]) should return True.
You may not use helper functions, loops or global variables. You may use slicing.
Reminder: fib(n + 2) = fib(n + 1) + fib(n), fib(1) = fib(2) = 1.

def is_fib(L):
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Question 6. [8 marks]

Each of the subquestions in this question contains a piece of code. Treat each piece of code independently
(i.e., code in one question is not related to code in another), and write the expected output for each
piece of code. If the code produces an error, write down the output that the code prints before the error
is encountered, and then write “ERROR.” You do not have to specify what kind of error it is.

Part (a) [2 marks]

A = [[1, 2], [3, 4]]

A[0] = A[1]

B = A[:][0]

B[0] = 5

print(A)

Part (b) [2 marks]

def f():

L[0] = 5

L = [1, 2]

print(f(L))

print(L)

Part (c) [2 marks]

def f(L, M):

L = M

L[0] = 3

M = [1, 2]

L = [3, 4]

f(L, M)

print(M[0])

Part (d) [2 marks]

s1 = "HO HO HO"

s2 = s1

s1 = "Happy Holidays!"

print(s2)
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Question 7. [8 marks]

The left-hand column in the table below contains different pieces of code that work with integer n. In the
right-hand column, give the asymptotic tight upper bound on the worst-case runtime complexity of each
piece of code, using Big O notation. Assume that arithmetic operations such as + and ** take contstant
time.

Code Complexity

total, i = 0.0, 0

for i in range(n):

for j in range(i//2):

total += i

i, j, sum = 1, 1, 0

while i < n**3:

while j < n:

sum = sum + i

j += 1

i += n

def f(n):

if n == 0:

return 1

return f(n//2) + f(n//2)

if __name__ == "__main__":

f(n)

def f(n):

i, total = 0, 0.0

while (i < n) and ((i % 10000) != 0):

total += i

i += 1

if __name__ == "__main__":

f(n)
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Question 8. [7 marks]

Consider the following code

def mystery_helper(L, k):

p = max(L[0], L[-1])

L1 = []

L2 = []

for e in L:

if e < p:

L1.append(e)

else:

L2.append(e)

if len(L1) > k:

return mystery_helper(L1, k)

elif len(L1) < k:

return mystery_helper(L2, k-len(L1))

else:

return p

def mystery(L):

return mystery_helper(L, len(L)//2)

Part (a) [4 marks]

State clearly and concisely what mystery_helper(L, k) returns.
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Part (b) [3 marks]

What is the tight asymptotic upper bound on the worst-case runtime complexity of mystery(L), where
n = len(L)? Use Big O notation. Explain how you got your answer to this subquestion. You may assume
that L is a list of floats.
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Question 9. [10 marks]

A timestamp is a tuple consisting of two integers, with the first one denoting the hour in the day (between 0
and 23), and the second one denoting the minute (between 0 and 59). The timestamp (5, 10) corresponds
to 5:10AM, the timestamp (13, 25) corresponds to 1:25PM, and so on. Write a function with the signature
sorted_timestamps(timestamps) that takes in a list of timestamps, and returns a sorted version of that
list, with the sorting done from earlier to later timestamps. The function must run in O(n) time,
where n = len(timestamps). For example,

sorted_timestamps([(5, 10), (2, 40), (22, 59), (5, 10)])

should return [(2, 40), (5, 10), (5, 10), (22, 59)].

def sorted_timestamps(timestamps):
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Question 10. [7 marks]

We can use a dictionary to record who is friends with whom by recording the lists of friends in a dictionary.
For example:

friends = {"Carl Gauss": ["Isaac Newton", "Gottfried Leibniz", "Charles Babbage"],

"Gottfried Leibniz": ["Carl Gauss"],

"Isaac Newton": ["Carl Gauss", "Charles Babbage"],

"Ada Lovelace": ["Charles Babbage", "Michael Faraday"]}

"Charles Babbage": ["Isaac Newton", "Carl Gauss", "Ada Lovelace"],

"Michael Faraday"" ["Ada Lovelace"] }

Here, Carl Gauss is friends with Isaac Newton, Gottfried Leibniz, and Charles Babbage. Assume that
friendships are symmetric, so that if X is friends with Y, then it’s guaranteed that Y is friends with X. A
clique is defined as a group of friends where everyone is friends with everyone. For example, Carl Gauss,
Isaac Newton, and Charles Babbage form a clique in the example above, since all three are friends with
each other. Ada Lovelace and Michael Faraday also form a clique.

Write the function max_clique(friends), which takes in a dictionary in the format above, and returns
the largest clique that can be found, as a list. (If there are several such cliques, return one of them.) For ex-
ample, the largest clique in the example above is ["Carl Gauss", "Isaac Newton", "Charles Babbage"],
since there is no clique of size larger than 3.

def max_clique(friends):
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Extra space for solutions
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