CSC 180 H1F Project # 3 — General Instructions Fall 2016

Due: Tuesday 29 November by 11:00pm Worth: 8%

Submitting your assignment

You must hand in your work electronically, using the MarkUs system. Log in to
https://markus.teach.cs.toronto.edu/csc180-2016-09

using your UOTRId login and password. You may work alone or with a partner. For teams of two, we
strongly recommend that you work together rather than divide the work.

To declare your partnership, one of you needs to invite the other to be a partner, and then they need
to accept the invitation. To invite a partner, navigate to the Project 3 page, find “Group Information”,
and click on “Invite”. You will be prompted for the other student’s ECF user name; enter it. To accept
an invitation, find “Group Information” on the Project 3 page, find the invitation listed there, and click
on “Join”. Note that, when working in a pair, only one person should submit the assignment.

To submit your work, again navigate to the Project 3 page, then click on the “Submissions” tab near
the top. Click “Add a New File” and either type a file name or use the “Browse” button to choose one.
Then click “Submit”. For this assignment, you must hand in two files named:

synonyms.py
synonyms_report.pdf

You must not submit the texts of the novels used in testing.

If you would like to import anything other than math or matplotlib.pyplot, please ask for permission
first. In particular, you may not import re.

You can submit a new version of files at any time (though the lateness penalty applies if you submit
after the deadline)—look in the “Replace” column. For the purposes of determining the lateness penalty,
the submission time is considered to be the time of your latest submission.

Once you have submitted, click on the file’s name to check that you have submitted the correct version.
Remember that the names of the files you submit must be exactly as specified (and the case of the letters
must be the same). If your file is not named exactly as specified, your code will receive zero for correctness.

Clarifications and discussion board

Important clarifications and/or corrections to the assignment, should there be any, will be posted on
the CSC180H1 Piazza page. You are responsible for monitoring the announcements there. You are also
responsible for monitoring the CSC180H1 discussion board on Piazza.

Hints & tips

e If you are working in a team, I recommend that you work together rather than split the work and
do it separately. First, both of you need to know how to solve the problems. Second, if you work
together, the end product will likely be better.

e Start early. Programming projects always take more time than you estimate!

e Do not wait until the last minute to submit your code. You can overwrite previous submissions with
more recent ones, so submit early and often—a good rule of thumb is to submit every time you get
one more feature implemented and tested.

e Write your code incrementally. Don’t try to write everything at once, and then compile it. That
strategy never works. Start off with something small that compiles, and then add functions to it
gradually, making sure that it compiles every step of the way.

Engineering Science, University of Toronto Page 1 of 6

CSC 180 H1F Project # 3 — General Instructions Fall 2016

e Read these instructions and make sure you understand them thoroughly before you start—ask ques-
tions if anything is unclear!

e Inspect your code before submitting it. Also, make sure that you submit the correct file.

e Seek help when you get stuck! Check the discussion board first to see if your question has already
been asked and answered. Ask your question on the discussion board if it hasn’t been asked already.
Talk to your TA during the lab if you are having difficulties with programming. Go to the instructors’
office hours if you need extra help with understanding the course content.

At the same time, beware not to post anything that might give away any part of your solution—this
would constitute plagiarism, and the consequences would be unpleasant for everyone involved! If you
cannot think of a way to ask your question without giving away part of your solution, then please
drop by office hours or ask by email instead.

e If your email to the TA or the instructor is “Here is my program. What’s wrong with it?”, don’t
expect an answer! We expect you to at least make an effort to start to debug your own code, a skill
which you are meant to learn as part of this course. And as you will discover for yourself, reading
through someone else’s code is a difficult process—we just don’t have the time to read through and
understand even a fraction of everyone’s code in detail.

However, if you show us the work that you’ve done to narrow down the problem to a specific section
of the code, why you think it doesn’t work, and what you’ve tried to fix it, it will be much easier to
provide you with the specific help you require and I will be happy to do so.

How you will be marked

We will mark your project for correctness, efficiency (only where specified), and for a report that correctly
describes the performance of your project.

For correctness, we will run your functions using the Python 3 interpreter installed on ECF to see if
they produce the correct output. Please ensure that you are running Python 3 as well. Syntax errors in
your code will cause you to lose most of the marks for this assignment.

Engineering Science, University of Toronto Page 2 of 6

CSC 180 H1F Project # 3 — Semantic Similarity Fall 2016

One type of question encountered in the Test of English as a Foreign Language (TOEFL) is the “Synonym
Question”, where students are asked to pick a synonym of a word out of a list of alternatives. For example:

1. vexed (Answer: (a) annoyed)
(a) annoyed

(b) amused

(c) frightened

(d) excited

For this assignment, you will build an intelligent system that can learn to answer questions like this one. In
order to do that, the system will approximate the semantic similarity of any pair of words. The semantic
similarity between two words is the measure of the closeness of their meanings. For example, the semantic
similarity between “car” and “vehicle” is high, while that between “car” and “flower” is low.

In order to answer the TOEFL question, you will compute the semantic similarity between the word
you are given and all the possible answers, and pick the answer with the highest semantic similarity to the
given word. More precisely, given a word w and a list of potential synonyms s1, so, s3, sS4, we compute the
similarities of (w, s1), (w, s2), (w, s3), (w, s4) and choose the word whose similarity to w is the highest.

We will measure the semantic similarity of pairs of words by first computing a semantic descriptor
vector of each of the words, and then taking the similarity measure to be the cosine similarity between
the two vectors.

Given a text with n words denoted by (w1, we, ..., wy,) and a word w, let desc,, be the semantic descriptor
vector of w computed using the text. desc, is an n-dimensional vector. The i-th coordinate of desc,, is
the number of sentences in which both w and w; occur. For efficiency’s sake, we will store the semantic
descriptor vector as a dictionary, not storing the zeros that correspond to words which don’t co-occur with
w. For example, suppose we are given the following text (the opening of Notes from the Underground by
Fyodor Dostoyevsky, translated by Constance Garnett):

I am a sick man. I am a spiteful man. I am an unattractive man. I believe my liver is diseased.
However, I know nothing at all about my disease, and do not know for certain what ails me.

The word “man” only appears in the first three sentences. Its semantic descriptor vector would be:

{"i": 3, "am": 3, "a": 2, "sick": 1, "spiteful": 1, "an": 1, "unattractive": 1}
The word “liver” only occurs in the second sentence, so its semantic descriptor vector is:

{"i": 1, "believe": 1, "my": 1, "is": 1, "diseased": 1}
We store all words in all-lowercase, since we don’t consider, for example, “Man” and “man” to be different
words. We do, however, consider, e.g., “believe” and “believes”, or “am” and “is” to be different words.
We discard all punctuation.

The cosine similarity between two vectors u = {uy,ug,...,uny} and v = {v1,ve,...,vx} is defined as:

N
sim(u,v) = wuvo_ D=1 Uil

We cannot apply the formula directly to our semantic descriptors since we do not store the entries which
are equal to zero. However, we can still compute the cosine similarity between vectors by only considering
the positive entries.

For example, the cosine similarity of “man” and “liver”, given the semantic descriptors above, is

3 -1 (for the word "i")
V32 +2 4124124124+ 12)(12+ 12+ 12+ 12 4+ 12)

= 3/v/130 = 0.2631 . ..

Engineering Science, University of Toronto Page 3 of 6

CSC 180 H1F Project # 3 — Semantic Similarity Fall 2016

Part 1.

Implement the following functions in synonyms.py. Note that the names of the functions are case-sensitive
and must not be changed. You are not allowed to change the number of input parameters, nor to add any
global variables. Doing so will cause your code to fail when run with our testing programs, so that you
will not get any marks for functionality. We provide you with a starter version of synonyms.py

Subpart (a) cosine_similarity(vecl, vec2) (10%)

This function returns the cosine similarity between the sparse vectors vecl and vec2, stored as dictionaries.
For example,

cosine_similarity({"a": 1, "b": 2, "c": 3}, {"b": 4, "c": 5, "d": 6})

should return approximately 0.70 (as a float).

Subpart (b) build_semantic_descriptors(sentences) (35%)

This function takes in a list sentences which contains lists of strings (words) representing sentences, and
returns a dictionary d such that for every word w that appears in at least one of the sentences, d [w] is itself
a dictionary which represents the semantic descriptor of w (note: the variable names here are arbitrary).
For example, if sentences represents the opening of Notes from the Underground above:

I:I:Hill s llam" s Ilall s "SiCk" s Ilmanll] s

("i", "am", "a", "spiteful", "man"],

["i", "am", "an", "unattractive", "man"],

["i", "believe", "my", "liver", "is", "diseased"],

["however", "i", "know", "nothing", "at", "all", "about", "my",

"disease", "and", "do", "not", "know", "for", "certain", "what", "ails", "me"]],

part of the dictionary returned would be:

{ "man": {"i": 3, "am": 3, "a": 2, "sick": 1, "spiteful": 1, "an": 1,
"unattractive": 1},
"liver": {"i": 1, "believe": 1, "my": 1, "is": 1, "diseased": 1},

.

with as many keys as there are distinct words in the passage.

Subpart (¢) build_semantic_descriptors_from_files(filenames) (20%)

This function takes a list of filenames of strings, which contains the names of files (the first one can
be opened using open(filenames[0], "r", encoding="latini")), and returns the a dictionary of the
semantic descriptors of all the words in the files filenames, with the files treated as a single text.

You should assume that the following punctuation always separates sentences: ".", "!" "?" and that
is the only punctuation that separates sentences. You should also assume that that is the only punctuation
that separates sentences. Assume that only the following punctuation is present in the texts:

I:ll n n_n n__n n.n n. "]
b b b b . b b

Engineering Science, University of Toronto Page 4 of 6

CSC 180 H1F Project # 3 — Semantic Similarity Fall 2016

Subpart (d) most_similar_word(word, choices, semantic_descriptors, similarity_fn) (15%)

This function takes in a string word, a list of strings choices, and a dictionary semantic_descriptors
which is built according to the requirements for build_semantic_descriptors, and returns the element
of choices which has the largest semantic similarity to word, with the semantic similarity computed using
the data in semantic_descriptors and the similarity function similarity_fn. The similarity function is
a function which takes in two sparse vectors stored as dictionaries and returns a float. An example of such
a function is cosine_similarity. If the semantic similarity between two words cannot be computed, it is
considered to be —1. In case of a tie between several elements in choices, the one with the smallest index
in choices should be returned (e.g., if there is a tie between choices[5] and choices[7], choices[5] is
returned).

Subpart (e) run_similarity_test(filename, semantic_descriptors, similarity_fn) (10%)

This function takes in a string filename which is the name of a file in the same format as test.txt, and
returns the percentage (i.e., float between 0.0 and 100.0) of questions on which most_similar_word()
guesses the answer correctly using the semantic descriptors stored in semantic_descriptors, using the
similarity function similariy_fn.

The format of test.txt is as follows. On each line, we are given a word (all-lowercase), the correct
answer, and the choices. For example, the line:

feline cat dog cat horse
represents the question:

feline:
(a) dog
(b) cat
(c) horse

and indicates that the correct answer is “cat”.

Subpart (f) Efficiency

You will receive at most 90% of the available marks for Subpart b and ¢ and if
build_semantic_descriptors_from_files(filenames) takes over 120 seconds to run on an ECF
workstation when the files are the novels specified in Part 2.

Part 2.

For this part, a detailed report is not required. One-sentence answers and (clearly-labelled) graphs are
sufficient. In your report, for each subpart, include the code used to generate the results you report. You
do not have to use matplotlib to generate your graphs, although we recommend that you learn to use it
at some point.

Subpart (a) Experimenting on a large corpus of text (4%)

Download the novels Swann’s Way by Marcel Proust, and War and Peace by Leo Tolstoy from Project
Gutenberg, and use them to build a semantic descriptors dictionary. Report how well the program performs
(using the cosine similarity similarity function) on the questions in test.txt, using those two novels at

Engineering Science, University of Toronto Page 5 of 6

CSC 180 H1F Project # 3 — Semantic Similarity Fall 2016

the same time. Note: the program may take several minutes to run (or more, if the implementation is
inefficient). The novels are available at the following URLs:
http://www.gutenberg.org/cache/epub/7178/pg7178.txt
http://www.gutenberg.org/cache/epub/2600/pg2600.txt
If your program takes too long to run, report the results on a shorter text.

Subpart (b) Experimenting with alternative similarity measures (3%)

Two alternative similarity measures between two vectors are: the negative distance in Euclidean space
between the vectors, and the negative distances in Euclidean space between the normalized versions of the
vectors:

$TMeye(V1,v2) = —||v; — va|

8iMeucnorm (V1,V2) = —|[v1/|v1] — va/|val|].

Report on the performance of the algorithm (in terms of the percent of questions answered correctly)
using the text of the two novels on text.txt using these two similarity measures, and compare that to the
performance using the cosine similarity measure.

Subpart (c) Experimenting with smaller corpora of text: efficiency and performance (3%)

Plot the performance (in terms of the percent of questions answered correctly) on test.txt and the runtime
of the algorithm (including the time to build the descriptor dictionary) on 10%, 20%,, 90%, 100% of the
text of the two novels, using the cosine similarity measure. Clearly label the axes of your graphs. The
runtime can be measured on any computer you like, not necessarily on ECF.

Engineering Science, University of Toronto Page 6 of 6

