CSC 180 H1F Project # 2 — General Instructions Fall 2016

Due: Sunday 13 November by 10:59pm Worth: 8%

Submitting your project

You must hand in your work electronically, using the MarkUs system. Log in to
https://markus.teach.cs.toronto.edu/csc180-2016-09/en/main
using your UTORid.
To submit your work, again navigate to the Project 2 page, then click on the “Submissions” tab near
the top. Click “Add a New File” and either type a file name or use the “Browse” button to choose one.
Then click “Submit”. For this project, you must hand in just one file:

e gomoku.py

You can submit a new version of the file at any time (though the lateness penalty applies if you submit
after the deadline)—look in the “Replace” column. For the purposes of determining the lateness penalty,
the submission time is considered to be the time of your latest submission.

Once you have submitted, click on the file’s name to check that you have submitted the correct version.
Remember that the names of the files you submit must be exactly as specified (and the case of the letters
must be the same). If your file is not named exactly as specified, your code will receive zero for correctness.

The if __name == __"main"__ block

All your testing code should be inside the if __name __== __"main"__ block. You must not use global
variables in this project.

Clarifications and discussion board

Important clarifications and/or corrections to the project, should there be any, will be posted on the
CSC180H1F Piazza. You are responsible for monitoring the announcements there.

Hints & tips

e Start early. Programming projects always take more time than you estimate!

e Do not wait until the last minute to submit your code. You can overwrite previous submissions with
more recent ones, so submit early and often—a good rule of thumb is to submit every time you get
one more feature implemented and tested.

e Write your code incrementally. Don’t try to write everything at once, and then compile it. That
strategy never works. Start off with something small that compiles, and then add functions to it
gradually, making sure that it compiles every step of the way.

e Read these instructions and make sure you understand them thoroughly before you start—ask ques-
tions if anything is unclear!

e Inspect your code before submitting it. Also, make sure that you submit the correct file.

e Seek help when you get stuck! Check the discussion board first to see if your question has already
been asked and answered. Ask your question on the discussion board if it hasn’t been asked already.
Talk to your TA during the lab if you are having difficulties with programming. Go to the instructors’
office hours if you need extra help with understanding the course content.

At the same time, beware not to post anything that might give away any part of your solution—this
would constitute plagiarism, and the consequences would be unpleasant for everyone involved! If you

Engineering Science, University of Toronto Page 1 of 5



CSC 180 H1F Project # 2 — General Instructions Fall 2016

cannot think of a way to ask your question without giving away part of your solution, then please
drop by office hours or ask by private Piazza message instead.

e If your message to the TA or the instructor is “Here is my program. What’s wrong with it?”, don’t
expect an answer! We expect you to at least make an effort to start to debug your own code, a skill
which you are meant to learn as part of this course. And as you will discover for yourself, reading
through someone else’s code is a difficult process—we just don’t have the time to read through and
understand even a fraction of everyone’s code in detail.

However, if you show us the work that you’ve done to narrow down the problem to a specific section
of the code, why you think it doesn’t work, and what you’ve tried to fix it, it will be much easier to
provide you with the specific help you require and we will be happy to do so.

How you will be marked
We will mark your project for the correctness of the functions that you are required to write. Make sure
that you follow the specifications exactly.

Correctness

We will run your functions using a Python 3 interpreter. Please ensure that you are running Python 3 as
well. To check what version of Python you are running, you can run the following in your Python shell:

import sys
sys.version

Syntax errors in your code will cause you to lose most of the marks for this project.

Note that your functions must be implemented precisely according to the project specifica-
tions. Their signatures should be exactly as in the project handout, and their behaviour should be exactly
as specified. In particular, make sure that functions do not print anything unless the project specifications
specifically demand that, and that the functions return exactly what the project handout is asking for.

Engineering Science, University of Toronto Page 2 of 5



CSC 180 H1F Project # 2 — Al For the Game of Gomoku Fall 2016

The Gomoku Game

In this assignment you will implement a simple (and imperfect) Al engine for the game Gomoku, played
on a 8 x 8 board. In Gomoku, there are two players. One player plays with black stones and the other
player plays with white stones. A player moves by placing a stone on an empty square on the board. The
player who plays with black stones always moves first. After the first move, the players alternate. A player
wins if she has placed five of her stones in a sequence, either horizontally, or vertically, or diagonally. Please
read

http://en.wikipedia.org/wiki/Gomoku

for more information about Gomoku. We will be playing the standard variant.

1 The starter code

The file gomoku. py contains the starter code for the Gomoku game and Al engine. The program works as
follows. The computer (which plays with the black stones) always moves first. After the first move, the
user’s and the computer’s moves alternate. The computer determines its move by finding the move that
maximises the return value of the score function (which is provided).

Functions in gomoku.py accepts board as one of its arguments. This is the representation of the
Gomoku board. The square (y,x) on the board is stored in board[y] [x]. The value of the square is:

e " " if the square is empty,
e "b", if the square has a black stone on it, and

e "w" if the square has a white stone on it.

See the function printBoard for an example of using board.

An important part of the Gomoku Al engine is finding contiguous sequences of stones of the same colour
on the Gomoku board. There are four possible directions for a sequence: left-to-right, top-to-bottom,
upper-left-to-lower-right, and upper-right-to-lower-left. Note that we do not consider, for example, the
direction right-lo-left, since a right-to-left sequence can be represented as a left-to-right sequence. The
direction of a sequence can be represented by a pair of numbers (d_y, d_x) as follows:

e (0,1): direction left-to-right. For example, the sequence of stones of the same colour on coordinates
(5,2), (5,3), (5,4), (5,5) is a sequence in direction left-to-right. Note that we say that the last
stone in the sequence is at location (5,5), not at location (5,2).

e (1,0): direction top-to-bottom. For example, a sequence of stones of the same colour on coordinates
3,1, (4,1), (5,1) is a top-to-bottom sequence. Note that we say that the last stone in the
sequence is at location (5,1), not at location (3,1).

e (1,1): direction upper-left-to-lower-right. For example, a sequence of stones of the same colour on
coordinates (2,3), (3,4), (4,5) is an upper-left-to-lower-right sequence. Note that we say that
the last stone in the sequence is at location (4,5), not at location (2,3).

e (1,-1): direction upper-right-to-lower-left. For example, a sequence of stones of the same colour on
coordinates (5,5), (6,4), (7,3) is an upper-right-to-lower-left sequence. Note that we say that
the last stone in the sequence is at location (7,3), not at location (5,5).

A sequence can be:

e open: a stone can be put on a square at either side of the sequence.

Engineering Science, University of Toronto Page 3 of 5



CSC 180 H1F Project # 2 — Al For the Game of Gomoku Fall 2016

=EEE

N o o & w N B O

N o 0 & w N e oo
T
T S
T S Y

b

Figure 1: (1,0) Figure 2: (0,1) Figure 3: (0,1) Figure 4: (1,1) Figure 5: (1,-1)

closed: the sequence is blocked on both sides, so that no stone can be placed on either side of the
sequence. This can occur either because the sequence begins/ends near the border of the board, or
because there is a stone of a different colour in the location immediately next to the beginning/end
of the sequence.

semi-open: the sequence is neither open nor closed.

Here are some examples of sequences and their classifications.

Figure 1: An open sequence with 3 white stones. The direction is (1,0). The last stone is at location
(6,1).

Figure 2: A semi-open sequence with 3 black stones. The direction is (0,1). The last stone is at
location (3,5).

Figure 3: A closed sequence with 4 white stones. The direction is (0,1). The last stone is at location
(3 H) 3) .
Figure 4: A closed sequence with 3 black stones. The direction is (1,1). The last stone is at location
(7,2).

Figure 5: A semi-open sequence with 4 white stones. The direction is (1,-1). The last stone is at
location (3,3).

The file gomoku.py contains implementations of the following functions:

print_board(board)
This function prints out the Gomoku board.

score(board)
This function computes and returns the score for the position of the board. It assumes that black
has just moved.

play_gomoku(board_size)
This function allows the user to play against a computer on a board of size board_size x board_size.
This function interacts with the Al engine by calling the function searchMax (), which you will write.

put_seq_on_board(board, y, x, d_y, d_x, length, col)

This helper function adds the sequence of stones of colour col of length length to board , starting
at location (y,x) and moving in the direction (d_y, d_x). This function facilitates the testing of
the Al engine.

analysis(board):
This function analyses the position of the board by computing the number of open and semi-open
sequences of both colours.

Do not modify these functions!

Engineering Science, University of Toronto Page 4 of 5



CSC 180 H1F Project # 2 — Al For the Game of Gomoku Fall 2016

Part 1. The Al engine

Write an Al engine for the Gomoku game by implementing the following functions.

e is_empty(board)
This function returns True iff there are no stones on the board board.

e is_bounded(board, y_end, x_end, length, d_y, d_x)

This function analyses the sequence of length length that ends at location (y_end, x_end). The func-
tion returns "OPEN" if the sequence is open, "SEMIOPEN" if the sequence if semi-open, and "CLOSED"
if the sequence is closed.

Assume that the sequence is complete (i.e., you are not just given a subsequence) and valid, and
contains stones of only one colour.

e detect_row(board, col, y_start, x_start, length, d.y, d.x)
This function analyses the row (let’s call it R) of squares that starts at the location (y_start,x_start)
and goes in the direction (d_y,d-x). Note that this use of the word row is different from “a row in
a table”. Here the word row means a sequence of squares, which are adjacent either horizontally,
or vertically, or diagonally. The function returns a tuple whose first element is the number of open
sequences of colour col of length length in the row R, and whose second element is the number of
semi-open sequences of colour col of length length in the row R.

Assume that (y_start,x_start) is located on the edge of the board. Only complete sequences count.
For example, column 1 in Fig. 1 is considered to contain one open row of length 3, and no other
rows.

Assume length is an integer greater or equal to 2.

e detect_rows(board, col, length)
This function analyses the board board. The function returns a tuple, whose first element is the
number of open sequences of colour col of length lengthon the entire board, and whose second
element is the number of semi-open sequences of colour col of length length on the entire board.

Only complete sequences count. For example, Fig. 1 is considered to contain one open row of length
3, and no other rows.

Assume length is an integer greater or equal to 2.

e search_max(board):
This function uses the function score() (provided) to find the optimal move for black. It finds the
location (y,x), such that (y,x) is empty and putting a black stone on (y,x) maximizes the score of
the board as calculated by score(). The function returns a tuple (y, x) such that putting a black
stone in coordinates (y, x) maximizes the potential score (if there are several such tuples, you can
return any one of them). After the function returns, the contents of board must remain the same.

e is win(board) This function determines the current status of the game, and returns one of
["White won", "Black won", "Draw", "Continue playing"], depending on the current status
on the board. The only situation where "Draw" is returned is when board is full.

Part 2.

Play the game and think about how you could improve the AI engine for the class contest. There is no
need to submit anything for this part yet.

Engineering Science, University of Toronto Page 5 of 5



