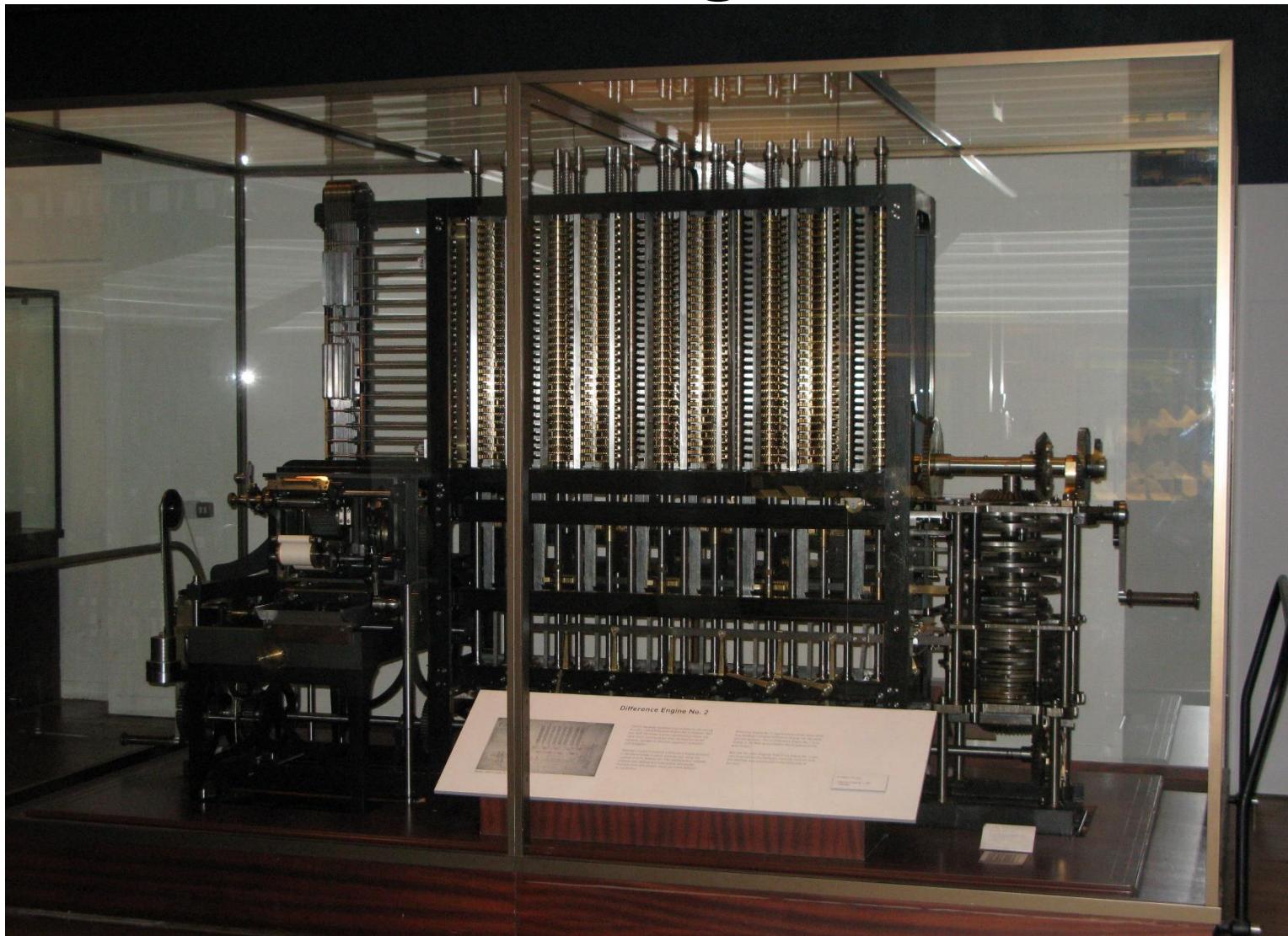


UNIVERSITY OF
TORONTO



Ada Lovelace Day

Ada, Countess of Lovelace, 1840

The Difference Engine

The Difference Engine

- A mechanical calculator that was able to automatically compute values of arbitrary polynomials
- Designed by Charles Babbage (the Lucasian Professor of Mathematics at Cambridge*)

* At one time, Isaac Newton's job

89012345

5 6 7 8 9 0 1 2

90123460

1 2 3 4 5 6

567890

90125450

09876

32109

6543

64321

10987

93765

The Analytical Engine

- An extension of the ideas of the Difference Engine by Babbage
- Could do loops

The world's first computer program

- Ada Lovelace wrote about the Analytical Engine. To explain its utility, she wrote a complex program for it. The program computed Bernoulli Numbers

$$0 = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \left(\frac{2n}{2} \right) + B_3 \left(\frac{2n \cdot (2n-1) \cdot (2n-2)}{2 \cdot 3 \cdot 4} \right) + \left. \right\} \\ + B_5 \left(\frac{2n \cdot (2n-1) \dots (2n-4)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \right) + \dots + B_{2n-1}$$

$$0 = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \left(\frac{2n}{2} \right) + B_3 \left(\frac{2n \cdot (2n-1) \cdot (2n-2)}{2 \cdot 3 \cdot 4} \right) + \left. \begin{array}{l} \\ \\ \end{array} \right\} \\ + B_5 \left(\frac{2n \cdot (2n-1) \cdots (2n-4)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \right) + \cdots + B_{2n-1}$$

Idea: first compute $B_1 \dots B_k$, and then use a loop to compute B_{k+1}

The World's First Computer Program

Number of Operation	Nature of Operation	Variables acted upon	Variables receiving results	Indication of change in the value on any Variable	Statement of Results	Data										Working Variables			
						1V_1	1V_2	1V_3	0V_4	0V_5	0V_6	0V_7	0V_8	0V_9	$^0V_{10}$	$^0V_{11}$	$^0V_{12}$	$^0V_{13}$	
						○	○	○	○	○	○	○	○	○	○	○	○	○	
1	×	$^1V_2 \times ^1V_3$	$^1V_4, ^1V_5, ^1V_6$	$\begin{cases} ^1V_2 = ^1V_2 \\ ^1V_3 = ^1V_3 \end{cases} = 2n$	2	n	2n	2n	2n									
2	-	$^1V_4 - ^1V_1$	2V_4	$\begin{cases} ^1V_4 = ^2V_4 \\ ^1V_1 = ^1V_1 \end{cases} = 2n - 1$	1	2n - 1										
3	+	$^1V_5 + ^1V_1$	2V_5	$\begin{cases} ^1V_5 = ^2V_5 \\ ^1V_1 = ^1V_1 \end{cases} = 2n + 1$	1	2n + 1									
4	÷	$^2V_5 \div ^2V_4$	$^1V_{11}$	$\begin{cases} ^2V_5 = ^0V_5 \\ ^2V_4 = ^0V_4 \end{cases} = \frac{2n-1}{2n+1}$	0	0	$\frac{2n-1}{2n+1}$			
5	÷	$^1V_{11} \div ^1V_2$	$^2V_{11}$	$\begin{cases} ^1V_{11} = ^2V_{11} \\ ^1V_2 = ^1V_2 \end{cases} = \frac{1}{2} \cdot \frac{2n-1}{2n+1}$	2	$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$			
6	-	$^0V_{13} - ^2V_{11}$	$^1V_{13}$	$\begin{cases} ^2V_{11} = ^0V_{11} \\ ^0V_{13} = ^1V_{13} \end{cases} = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$	0	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$	
7	-	$^1V_3 - ^1V_1$	$^1V_{10}$	$\begin{cases} ^1V_3 = ^1V_3 \\ ^1V_1 = ^1V_1 \end{cases} = n - 1 = (3)$	1	n	n - 1			
8	+	$^1V_2 + ^0V_7$	1V_7	$\begin{cases} ^1V_2 = ^1V_2 \\ ^0V_7 = ^1V_7 \end{cases} = 2 + 0 = 2$	2	2				
9	÷	$^1V_6 \div ^1V_7$	$^3V_{11}$	$\begin{cases} ^1V_6 = ^1V_6 \\ ^0V_{11} = ^3V_{11} \end{cases} = \frac{2n}{2} = A_1$	2n	2	$\frac{2n}{2} = A_1$			
10	×	$^1V_{21} \times ^3V_{11}$	$^1V_{12}$	$\begin{cases} ^1V_{21} = ^1V_{21} \\ ^3V_{11} = ^3V_{11} \end{cases} = B_1 \cdot \frac{2n}{2} = B_1 A_1$	$\frac{2n}{2} = A_1$	$B_1 \cdot \frac{2n}{2} = B_1 A_1$	
11	+	$^1V_{12} + ^1V_{13}$	$^2V_{13}$	$\begin{cases} ^1V_{12} = ^0V_{12} \\ ^1V_{13} = ^2V_{13} \end{cases} = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}$	0	$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$		
12	-	$^1V_{10} - ^1V_1$	$^2V_{10}$	$\begin{cases} ^1V_{10} = ^1V_{10} \\ ^1V_1 = ^1V_1 \end{cases} = n - 2 = (2)$	1	n - 2			
13	-	$^1V_6 - ^1V_1$	2V_6	$\begin{cases} ^1V_6 = ^2V_6 \\ ^1V_1 = ^1V_1 \end{cases} = 2n - 1$	1	2n - 1									
14		$^1V_1 + ^1V_7$	2V_7	$\begin{cases} ^1V_1 = ^1V_1 \\ ^1V_7 = ^2V_7 \end{cases} = 2 + 1 = 3$	1	3									
15	÷	$^2V_6 \div ^2V_7$	1V_8	$\begin{cases} ^2V_6 = ^2V_6 \\ ^2V_7 = ^2V_7 \end{cases} = \frac{2n-1}{3}$	2n - 1	3	$\frac{2n-1}{3}$								
16		$^1V_8 \times ^3V_{11}$	$^4V_{11}$	$\begin{cases} ^1V_8 = ^0V_8 \\ ^3V_{11} = ^4V_{11} \end{cases} = \frac{2n}{2} \cdot \frac{2n-1}{3}$	0	$\frac{2n}{2} \cdot \frac{2n-1}{3}$				
17	-	$^2V_6 - ^1V_1$	3V_6	$\begin{cases} ^2V_6 = ^3V_6 \\ ^1V_1 = ^1V_1 \end{cases} = 2n - 2$	1	2n - 2										
18		$^1V_1 + ^2V_7$	3V_7	$\begin{cases} ^1V_1 = ^1V_1 \\ ^1V_7 = ^3V_7 \end{cases} = 3 + 1 = 4$	1	4									
19	÷	$^3V_6 \div ^3V_7$	1V_9	$\begin{cases} ^3V_6 = ^3V_6 \\ ^3V_7 = ^3V_7 \end{cases} = \frac{2n-2}{4}$	2n - 2	4	$\frac{2n-2}{4}$								
20		$^1V_9 \times ^4V_{11}$	$^5V_{11}$	$\begin{cases} ^1V_9 = ^0V_9 \\ ^4V_{11} = ^5V_{11} \end{cases} = \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = A_3$	0	$\left\{ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} \right\} = A_3$								
21	×	$^1V_{22} \times ^5V_{11}$	$^0V_{12}$	$\begin{cases} ^1V_{22} = ^1V_{22} \\ ^0V_{12} = ^0V_{12} \end{cases} = B_3 A_3$	0	0	$B_3 A_3$				