
CSC180H1F Lab #6 Fall 2016

In this lab, you will write a program that lets you play Tic-Tac-Toe against the computer.
See https://en.wikipedia.org/wiki/Tic-tac-toe for details on the game. In this lab, you should try
to write functions that are as concise as possible. In many cases, this means using loops even if a more
tedious solution that doesn’t use loops is possible.

Problem 1.

Your first task is to enable two users to play against each other. Download ttt.py, and understand the
functions for creating an empty board and to print the board and the legend. Run ttt.py and observe
how print_board_and_legend(board) prints the list of lists board, which represents the board.

The goal is to be able to produce a game that goes, for example, as follows:

| | 1 | 2 | 3

---+---+--- ---+---+---

| | 4 | 5 | 6

---+---+--- ---+---+---

| | 7 | 8 | 9

Enter your move: 5

| | 1 | 2 | 3

---+---+--- ---+---+---

| X | 4 | 5 | 6

---+---+--- ---+---+---

| | 7 | 8 | 9

Enter your move: 1

O | | 1 | 2 | 3

---+---+--- ---+---+---

| X | 4 | 5 | 6

---+---+--- ---+---+---

| | 7 | 8 | 9

Enter your move: 3

Part (a)

Write a function that takes in an integer square_num between 1 and 9, and returns a list coord such that
board[coord[0]][coord[1]] = "X" would put an "X" in square square_num (an integer from 1 to 9).
Hint: the row number is ((square_num - 1) // 3).

Part (b)

Write a function put_in_board(board, mark, square_num) that modifies the contents of board such
that the string mark ("X" or "O") is put in the coordinates in board that correspond to square_num.

Engineering Science, University of Toronto Page 1 of 3

https://en.wikipedia.org/wiki/Tic-tac-toe

CSC180H1F Lab #6 Fall 2016

Part (c)

Write a loop that asks for the user to alternately enter coordinates for "X"s and "O"s such that two users
can play against each other as shown in the example above. Reminder: there is an example of repeatedly
asking the user for input here:
http://www.cs.toronto.edu/~guerzhoy/180/lectures/W04/lec2/WhileInput.html

Problem 2.

The goal now is to write a simple function that would have the computer play against the user.

Part (a)

Write a function with the signature get_free_squares(board) which creates and returns a new list which
contains a list of the coordinates of the free squares in the board. For example, if the board is represented
as follows

O | | X

---+---+---

| X |

---+---+---

O | |

, the function should return [[0, 1], [1, 0], [1, 2], [2, 1], [2, 2]].

Part (b)

Now write a function make_random_move(board, mark) that finds a random free square in board, and
puts the string mark in the free square. Hint: you can print a random number between 0 and n-1 as
follows:

import random

print(n * random.random())

Part (c)

Now use make_random_move() in order to have the computer play against the user.

Problem 3.

Now, the goal is to automatically figure out if the game is over. The game is over if there is a line of 3
"X"s or a line of 3 "O"s.

Part (a)

Write a function with the signature is_row_all_marks(board, row_i, mark) which returns True iff the
row with index row_i in board contains 3 marks equal to mark.

Engineering Science, University of Toronto Page 2 of 3

http://www.cs.toronto.edu/~guerzhoy/180/lectures/W04/lec2/WhileInput.html

CSC180H1F Lab #6 Fall 2016

Part (b)

Write a function with the signature is_col_all_marks(board, col_i, mark) which returns True iff the
column with index row_i in board contains 3 marks equal to mark.

Part (c)

Using the functions above, and also checking the diagonals, write a function with the signature is_win(board, mark)

that returns True iff the mark mark won on the board board (i.e., there is a line of 3 marks somewhere in
board).

Part (d)

Incorporate is_win() into the program such that the game stops when either the user or the computer
win, and prints the result of the game.

Problem 4.

Your job now is to improve the the function that makes the computer’s move.

Part (a)

Write a function which tries to put the computer’s mark in every free square on the board, and checks
whether is_win() returns True for the new board, returns if it does, and removes the mark and tries
to place it in another square otherwise. If there is no square such that putting a mark in it leads to an
immediate win, the function should put mark in a random free square.

Part (b)

Improve the algorithm that plays for the computer as much as you can.

Engineering Science, University of Toronto Page 3 of 3

