CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

Here’s what happens (approximately) with variables in Python. This is one of the hardest concepts in
CSC180, so dont worry if you dont get it right away: just keep working on it.

1 The memory table and variable table

We represent the computer’s memory using a memory table. The memory table tells us what data is stored
at what address in the computer. In Python, we refer to data using named variables. At any point in time,
each variable name is associated with an address. In order to figure out what data the variable refers to,
we need to look up which address the variable refers to, and then figure out what’s stored at that address.
The variable tables are used to figure out what address each variable refers to. Note that the same variable
name could refer to different addresses at different points in time.

We distinguish the integer 4200 from the address 4200 by using @4200 to denote the address.

Consider the following example:

Memory table Variable table(globals)
Address | Value Variable | Address
2000 42 n @2000
2010 43 greet @4000
4000 "hello"

The variable greet refers to address 4000. Ad address 4000, the string "hello" is stored. That means
that we expect the following:

>> greet
hello

We can find out which address a variable refers to using Python’s built-in id() function. id(object)
returns the memory address of object!. In our example, we’d expect

>> id(n)

2000

2 Changes in the memory and variable tables

When Python starts up, the memory table looks something like this (the memory addresses are made up).

Memory table

Address | Value
1000

1010

1020 2
1030 3
1040 4
1050

Ltechnically, id() isn’t always quite the address in all implementations of Python, but it’s close enough for our purposes,
and it is in CPython, which is the implementation of Python that we are using.

Engineering Science, University of Toronto Page 1 of 7

CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

Some integers are already stored at some of the addresses?. For example, the integer 2 is stored in

address (i.e., cell) 1020. When we assign a value to a variable, what really happens is that the variable
name becomes associated with an address. For example, consider the following code:

a=2
b=4

Executing the code changes the variable table so that the addresses of the integers 2 and 4 are associated
with the variable names a and b.

Variable table (globals)
Variable name | Address
a @1020
b @1040

We can associated new variable names with values that already exist in the memory table.

>> id(a)
1020
>> id(2)
1020
> ¢c = a
>> id(c)
1020

Basically, anything that refers to 2 (a and the literal 2 initially, and then c is well) has the same id
(NOTE: technically, id isn’t always quite the address in all implementations of Python, but it’s close
enough for our purposes, and it is in CPython, which is the implementation of Python that we are using.)

The variable table after executing the code above will be:

Variable table (globals)

Variable name | Address
a @1020
b @1040
c @1020

3 Lists

Here’s what happens with lists. When we define a list, it also goes into the memory table. Python finds
an unoccupied space in memory, and places our list there. The contents of the list — the addresses of each
of the elements — are all stored in memory.

Here is what happens when the following list is defined:

>> 1ist0 = [2, 4]

2As we saw in lecture, CPython preloads integers in the range -4...256

Engineering Science, University of Toronto Page 2 of 7

CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

Memory table Variable table (globals)
Address | Value Variable | Address
1000 [@1020, @1040] | | a @1020
1010 b @1040
1020 2 c @1020
1030 3 listO @1000
1040 4
1050

3.1 Aliasing

Consider the following code:

>> id(1ist0)
1000

>> listl = 1listO
>> id(list1)
1000

>> 1list0[0] = 3
>> 1istO

[3, 4]

>> 1listl

[3, 4]

What happened? 1ist0 and list1 refer to the same address (1000), so any change in 1ist0O changes
list1 and vice versa, since theyre the exact same list. We say that 1ist0 and list1 are aliases.
Here are the memory and variable tables after the change was made:

Memory table Variable table (globals)
Address | Value Variable | Address
1000 [@1030, @1040] a @1020
1010 b @1040
1020 2 c @1020
1030 3 listO @1000
1040 4 listl @1000
1050

There are two important things to understand here.

First, when we go listl = 1listO, the memory table does not change — only the variable table does.
What happens is that 1ist1 starts referring to the address to which 1ist0 was referring.

Second, 1ist0[0] means the first element of the list at address 1000. That’s exactly the same as what
1list1[0] means. For that reason, after setting 1ist1l = 1listO, changing 1ist0[0] is exactly the same
as changing 1ist1[0].

When we can change an object, we say that it is mutable (i.e., it can change). Lists are mutable. On
the other hand, integers are immutable — while it’s possible to make a variable that used to refer to the
address containing 2 to refer to the address containing 3, that would be a change in the variable table, not
a change in the memory table.

Engineering Science, University of Toronto Page 3 of 7

CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

That’s why we haven’t encountered the issue of aliasing before. Everything we’ve seen up to now —

strings, ints, floats — wasn’t mutable. We cant change the value of 2, or 3.14, or "hello">.

3.2 Note: creating new objects in memory

We have already seen this happen with lists, but it’s worth noting that integers (and strings, etc.) will
not in generall have already been loaded in memory. For example, the following will find an empty slot
in memory, put 42000 there, and then create an entry in the variable table making n refer to the memory
slot where 42000 was put:

n = 42000

This is also applicable to lists:

>> 1ist0 = [1, 2, 3]

>> listl = [4, 5, 6]

>> 1listl = 1listO

>> 1list0 = [10, 11, 12]
>> listl

[1, 2, 3]

Here, 1ist1 used to be an alias for 1ist0. When we went 1istO = [10, 11, 12], it wasn’t the
case that the contents of 1ist0 changed; rather, 1istO started referring to a new list entirely. listi,
meanwhile, kept referring to 1ist0’s old address.

4 Functions and Local Variables

Consider the following example.

def change_list(L1):

L1[0] = 4

L1 = [3,2,1]
def g(O:

L = [1,2,3]

change_1list(L)
print (L) #[4, 2, 3]

if __name__ == ’__main__"’:

O)

What happens when we call change_list(L) is that implicitly, we assign L1 = L. That is, the local
variable L1 and L are aliases of each other.

Every time a function is called, a local variable table for that particular call is created. That local
variable table is discarded after the call ends. If we call the same function twice, two separate copies of
the table are created?

3 Actually, we sort of can, see here:
http://codegolf.stackexchange.com/questions/28786/write-a-program-that-makes-2-2-5/28851#28851

AThis is almost completely true. A complication arises when default parameters are used, but we will not get into this
right now.

Engineering Science, University of Toronto Page 4 of 7

CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

In this case, e global variables are just the functions g, change_list, the string __name__, etc. All the
action is in g() and change_list().

After L = [1,2,3] is executed inside of g(), here’s the state of the memory (again, with the addresses
made up). In this example, we take care to list more global variables than usual — for example, we list the

global variable __name__.

-

Variable table (globals) Variable table (locals — g())
Variable Address Variable | Address
change_list() | @20000 L @1000
g0 @20100
__hame__ @20200

Memory table

Address | Value

1000 @1010, @1020, @1030]
1010
1020
1030
1040
1050

=W DN

20000 <change_list()>
20100 <g()>
20200 "_main__"

When we call change_1ist() with the argument L, the parameter L1 (a local variable) gets assigned
the address @1000. Now, we execute L1[0] = 4 inside the function change_list (). Since the variable L1
inside change_list () refers to @1000, the effect is to change the first element of the list stored at address
1000. Note that there is just one list there.

Variable table (globals) Variable table (locals — g()) (locals — change 1ist())
Variable Address Variable | Address Variable | Address
change_list() | @20000 L @1000 L1 @1000
g0 @20100
__name__ @20200

Memory table

Address | Value

1000 @1040, @1020, @1030]
1010
1020
1030
1040
1050

=W N =

20000 <change list()>
20100 <gO>
20200 "_main__"

Engineering Science, University of Toronto Page 5 of 7

CSC 180 H1F The Python Memory Model — Lecture Notes Fall 2016

Now, we execute L = [3,2,1]. Several things happen: a new list is created, with the contents [3,2,1].
Then the address of that new list is stored in the local-to-change_list () variable L1:

Variable table (globals) Variable table (locals — g()) (locals — change 1ist())
Variable Address Variable | Address Variable | Address
change_list() | @20000 L @1000 L1 @1050
g0 @20100
__nhame__ @20200

Memory table
Address | Value

1000 [@1040, @1020, @1030]
1010 1
1020 2
1030 3
1040 4
1050 [@1030, @1020, @1010]

20000 <change_list()>
20100 <g()>
20200 "_main__"

Note that the local variable L in g() is unaffected. When wee returning from change_list (), the local
variable L in change_list() will be discarded (though the list whose address it stores might persist for a
while).

Variable table (globals) Variable table (locals — g()) (locals — change 1ist())
Variable Address Variable | Address Doesn’t exist
change_list () | @20000 L @1000
g0 @20100
__hame__ @20200

Memory table
Address | Value

1000 [@1040, @1020, @1030]
1010 1
1020 2
1030 3
1040 4
1050 [@1030, @1020, @1010]

20000 <change list()>
20100 <g()>
20200 "_main__"

We're now back in g(), so that what gets printed is the list at address 1000.

Engineering Science, University of Toronto Page 6 of 7

CSC180H1F

The Python Memory Model — Lecture Notes

Fall 2016

Note that the story would be exactly the same (if slightly more confusing), if the code were:

def change_list(L):
L[0] = 4
L = [3,2,1]

def g(O:
L =1[1,2,3]
change_list (L)
print(L) #[4, 2, 3]

Everything would be exactly the same, except there would be two local variables called L — one in
change_list(), and one in g(). The L in change_list() would behave exactly the same as the L1 in

change_list().

Engineering Science, University of Toronto

Page 7 of 7

