
ESC180H1F Project #1 — General Instructions Fall 2024

Due: Sept. 29, 2024 by 3pm Worth: 5%

Submitting your project

For this project, you must hand in just one file:

• gamify.py

You can resubmit a new version of the file at any time before the deadline. Your last submission will
be graded.

The if __name __== __"main"__ block

All your testing code should be inside the if __name __== __"main"__ block. All you global vari-
ables must be initialized outside of the if __name __== __"main"__ block (for example, by calling
initialize().)

Clarifications and discussion board

Important clarifications and/or corrections to the project, should there be any, will be posted on the
ESC180 Piazza. You are responsible for monitoring the announcements there. You are also generally
responsible for monitoring the ESC180 Piazza discussion board.

Hints & tips

• Start early. Programming projects always take more time than you estimate!

• Do not wait until the last minute to submit your code. You can overwrite previous submissions with
more recent ones, so submit early and often—a good rule of thumb is to submit every time you get
one more feature implemented and tested.

• Write your code incrementally. Don’t try to write everything at once, and then compile it. That
strategy never works. Start off with something small that compiles, and then add functions to it
gradually, making sure that it compiles every step of the way.

• Read these instructions and make sure you understand them thoroughly before you start—ask ques-
tions if anything is unclear!

• Inspect your code before submitting it. Also, make sure that you submit the correct file.

• Seek help when you get stuck! Check the discussion board first to see if your question has already
been asked and answered. Ask your question on the discussion board if it hasn’t been asked already.
Talk to your TA or your instructor.

• If your email to the TA or the instructor is “Here is my program. What’s wrong with it?”, don’t
expect an answer! We expect you to at least make an effort to start to debug your own code, a skill
which you are meant to learn as part of this course. And as you will discover for yourself, reading
through someone else’s code is a difficult process—we just don’t have the time to read through and
understand even a fraction of everyone’s code in detail.

However, if you show us the work that you’ve done to narrow down the problem to a specific section
of the code, why you think it doesn’t work, and what you’ve tried to fix it, it will be much easier to
provide you with the specific help you require and we will be happy to do so.

Engineering Science, University of Toronto Page 1 of 8

ESC180H1F Project #1 — General Instructions Fall 2024

How you will be marked

We will mark your project for correctness. That is, your functions must work as described below. Below,
we give some suggestions for imroving the readability of your code. You will not be marked on the
documentation or style of your code, although we encourage you to document your code anyway.

Correctness

We will run your functions using a Python 3 interpreter. Please ensure that you are running Python 3 as
well. To check what version of Python you are running, you can run the following in your Python shell:

import sys

sys.version

Syntax errors in your code will cause your mark to be 0. Make sure that you submit a file that does not
contain syntax errors. If the file contains syntax errors, you will see that on Gradescope right away.

Note that your functions must be implemented precisely according to the project specifica-
tions. Their signatures should be exactly as in the project handout, and their behaviour should be exactly
as specified. In particular, make sure that functions do not print anything unless the project specifications
specifically demand that, and that the functions return exactly what the project handout is asking for.

Documentation

When writing code, you should write documentation to describe what your code is doing. Documentation
helps others and yourself understand what your code is meant to do. The general rule of thumb for
documentation states that you should add comments to your code in the following situations:

• For every function, as a docstring, to describe the parameters of the function and what the function
does. See below for more details on docstrings.

• Before every global variable declaration, to describe what kind of information the variable stores and
what properties (if any) that information is supposed to have throughout the execution of the code.

• Before all complicated sections of code, to help the reader understand what that code section is trying
to do.

• In general, comments should not simply restate what the code does (this does not add any useful
information to the code). Comments should add information that is implicit in the code, e.g., about
what purpose a computation serves, or why a certain section of code is written the way it is.

Style

Good style practices should be adhered to when writing your code. This includes the following:

• Use Python style conventions for your function and variable names. In particular, please use “pothole
case”: lowercase letters with words separated by underscores (_), to improve readability.

• Choose good names for your functions and variables. For example, num_coffee_cups is more helpful
and readable than ncc.

• To make sure your program will be formatted correctly is never to mix spaces and tabs when indenting
—use only tabs, or only spaces.

• Put a blank space before and after every operator. For example:

Engineering Science, University of Toronto Page 2 of 8

ESC180H1F Project #1 — General Instructions Fall 2024

b = 3 > x and 4 - 5 < 32 # good style: easy to read

b= 3>x and 4-5<32 # bad style: hard to read

• Write a docstring comment for each function. (See below for guidelines on the content of your
docstrings.) Put a blank line after every docstring comment.

• Each line must be less than 80 characters long, including tabs and spaces. You should break up long
lines using \.

• Your code should be readable and readily understandable.

Guidelines for writing docstrings

• Describe precisely what the function does.

• Do not reveal how the function does it.

• Make the purpose of every parameter clear.

• Refer to every parameter by name.

• Be clear about whether the function returns a value, and if so, what.

• Explain any conditions that the function assumes are true. Examples: “n is an int”, “n != 0”,
“the height and width of p are both even”.

• Be concise.

• Ensure that the text you write is grammatically correct.

• Write the docstring as a command (e.g., “Return the first . . . ”) rather than a statement (e.g.,
“Returns the first . . . ”).

Engineering Science, University of Toronto Page 3 of 8

ESC180H1F Project #1 — Gamification of Exercise Fall 2024

Gamification is the integration of elements found in games – such as points and badges – into non-
game activities. One example of gamification is students’ being awarded badges and points for completing
exercises in online courses. This is done in order to encourage students to complete the exercises. Another
example is supermarkets awarding points to customers for purchasing various items. This is done, in part,
to induce the customers to purchase more items in order to gain more points.

In this project, you will implement a simulator for an app that encourages the user to exercise more
by awarding “stars” to the user for exercising. The simulator will model how the user behaves, and could
be used to try out various strategies for awarding stars.

We imagine the user as accumulating “health points” and “fun points” (sometimes called hedons).
Every activity is associated with gaining some number of health points and some number of hedons.
Receiving a star increases the number of hedons that the user gains from performing the activity. Receiving
too many stars too often makes the user lose interest in stars altogether.

The simulation proceeds as a series of operations, which are simulated using calls to the functions that
you will define. For example, a simulation might proceed as follows:

if __name__ == ’__main__’:

initialize()

perform_activity("running", 30)

print(get_cur_hedons()) # -20 = 10 * 2 + 20 * (-2)

print(get_cur_health()) # 90 = 30 * 3

print(most_fun_activity_minute()) # resting

perform_activity("resting", 30)

offer_star("running")

print(most_fun_activity_minute()) # running

perform_activity("textbooks", 30)

print(get_cur_health()) # 150 = 90 + 30*2

The lines in the code above correspond to performing various activities (running, resting, carrying
textbooks), for various durations of time, as well as querying the system for the number of health points
and hedons that the user accumulated and querying the system for the activity that would gain the user
the most hedons if it were performed for one minute.

We assume that the user is always either running, carrying textbooks, or resting.
The user accumulates hedons and health points according to the following rules.

• The user starts out with 0 health points, and 0 hedons.

• The user is always either running, carrying textbooks, or resting.

• Running gives 3 health points per minute for up to 180 minutes, and 1 health point per minute for
every minute over 180 minutes that the user runs. (Note that if the user runs for 90 minutes, then
rests for 10 minutes, then runs for 110 minutes, the user will get 600 health points, since they rested
in between the times that they ran.)

• Carrying textbooks always gives 2 health points per minute.

• Resting gives 0 hedons per minute.

• Both running and carrying textbooks give -2 hedons per minute if the user is tired and isn’t using
a star (definition: the user is tired if they finished running or carrying textbooks less than 2 hours
before the current activity started.) For example, for the purposes of this rule, the user will be tired
if they run for 2 minutes, and then start running again straight away.

Engineering Science, University of Toronto Page 4 of 8

https://en.wikipedia.org/wiki/Gamification
http://spot.colorado.edu/~heathwoo/Phil220/utilitarianism.html

ESC180H1F Project #1 — Gamification of Exercise Fall 2024

• If the user is not tired, running gives 2 hedons per minute for the first 10 minutes of running, and -2
hedons per minute for every minute after the first 10.

• If the user is not tired, carrying textbooks gives 1 hedon per minute for the first 20 minutes, and -1
hedon per minute for every minute after the first 20.

• If a star is offered for a particular activity and the user takes the star right away, the user gets an
additional 3 hedons per minute for at most 10 minutes. Note that the user only gets 3 hedons per
minute for the first activity they undertake, and do not get the hedons due to the star if they decide
to keep performing the activity:

offer_star("running")

perform_activity("running", 5) # gets extra hedons

perform_activity("running", 2) # no extra hedons

• If three stars are offered within the span of 2 hours, the user loses interest, and will not get additional
hedons due to stars for the rest of the simulation.

Engineering Science, University of Toronto Page 5 of 8

ESC180H1F Project #1 — Gamification of Exercise Fall 2024

Here is a sample output of a simulation, along with comments explaining the output.

if __name__ == ’__main__’:

initialize()

perform_activity("running", 30)

print(get_cur_hedons()) # -20 = 10 * 2 + 20 * (-2)

print(get_cur_health()) # 90 = 30 * 3

print(most_fun_activity_minute()) #resting

perform_activity("resting", 30)

offer_star("running")

print(most_fun_activity_minute()) # running

perform_activity("textbooks", 30)

print(get_cur_health()) # 150 = 90 + 30*2

print(get_cur_hedons()) # -80 = -20 + 30 * (-2)

offer_star("running")

perform_activity("running", 20)

print(get_cur_health()) # 210 = 150 + 20 * 3

print(get_cur_hedons()) # -90 = -80 + 10 * (3-2) + 10 * (-2)

perform_activity("running", 170)

print(get_cur_health()) # 700 = 210 + 160 * 3 + 10 * 1

print(get_cur_hedons()) # -430 = -90 + 170 * (-2)

We provide you with a “starter” version of gamify.py—a skeleton of the code you will have to write,
with some parts already filled in. Please read it carefully and make sure you understand everything in the
starter code before you start making changes! You must not change the function signatures.

Part 1.

Implement the following functions in gamify.py. Note that the names of the functions are case-sensitive
and must not be changed. You are not allowed to change the number of input parameters. Doing so
will cause your code to fail when run with our testing programs, so that you will not get any marks for
functionality.

Note that “iff” means “if and only if.” When we say that a function f returns True iff condition c holds,
we mean that f returns True if c holds, and False if it doesn’t hold.

Subpart (a) get_cur_hedons()

This function returns the number of hedons that the user has accumulated so far.

Subpart (b) get_cur_health()

This function returns the number of health points that the user has accumulated so far.

Subpart (c) offer_star(activity)

This function simulates a offering the user a star for engaging in the exercise activity. Assume activity
is a string, one of "running", "textbooks", or "resting".

Engineering Science, University of Toronto Page 6 of 8

ESC180H1F Project #1 — Gamification of Exercise Fall 2024

Subpart (d) perform_activity(activity, duration)

The function simulates the user’s performing activity activity for duration minutes. Assume duration
is a positive int. If activity is not one of "running", "textbooks", or "resting", running the function
should have no effect.

Subpart (e) star_can_be_taken(activity)

The function returns True iff a star can be used to get more hedons for activity activity. A star can only
be taken if no time passed between the star’s being offered and the activity, and the user is not bored with
stars, and the star was offered for activity activity.

Subpart (f) most_fun_activity_minute()

The function returns the activity (one of "resting", "running", or "textbooks") which would give the
most hedons if the person performed it for one minute at the current time.

Subpart (g) initialize()

The function initialize all the global variables in the program. The following code should run two indepen-
dent simulations, with both SIMULATION 1 and SIMULATION 2 starting from the beginning.

initialize()

SIMULATION 1 CODE

#. ...

intiailize()

SIMLUATION 2 CODE

...

1 FAQ

1.1 What happens if the user starts running again right after they finish? Is this
relevant elsewhere?

For running, the user gets 3 health points per minute for 180 minutes, and 1 health point per minute
afterwards. The clock gets reset if the user carries textbooks or rests, even for one minute. For example:

perform_activity("running", 120)

perform_activity("running", 30)

perform_activity("running", 50)

Here, the user will get 3× 180 + 1× 20 health points in total.
On the other hand, in

perform_activity("running", 150)

perform_activity("textbooks", 1)

perform_activity("running", 50)

The user will get 200× 3 health points for running, and 2 health points for carrying textbooks.
This is not relevant for hedons calculations. In the examples above, the user is considered tired fo every

activity except the first one.

Engineering Science, University of Toronto Page 7 of 8

ESC180H1F Project #1 — Gamification of Exercise Fall 2024

1.2 Is a third star offered within the span of two hours effective?

No. The user becomes bored once a third star is offered within the span of two hours, and so it’s ineffective.
Three stars within the span of two hours make stars ineffective

1.3 If a stars is offered at 8am, 9am, and 10am, does that make stars ineffective?

No, but if they were offered at 8am, 9am, and 9:59am, then they would be ineffective.

1.4 If the user is tired, how many hedons will they get per minute if they take a star?

1 = -2+3

1.5 If the user runs for 5 minutes (taking a star for running), and then runs for 3
more minutes, do they get the +3 hedons/minute bonus for all the 8 minutes?

No, just for the first 5 minutes – the second run doesn’t count. Stars need to be used right away, by
performing the activity for which they are offered, if they are used at all

1.6 Can stars be given for resting?

Assume that doesn’t happen

1.7 Can two stars be given at the same time?

Assume that doesn’t happen.

1.8 Can duration in perform activity be 0? Can duration be fractional?

Assume duration is an integer greater than 0.

1.9 I haven’t used any loops in my solutions. Is anything wrong?

It’s possible to complete the project without using loops. In fact, I haven’t used any loops in my solution,
and I don’t think on the whole using loops would make your life easier in Project 1.

1.10 Does resting always give 0 hedons and 0 health points?

Yes

1.11 What happens if we perform activity("textbooks", 150)? Does the user get
tired?

We won’t test for that in our test code. (However, perform activity("running", 150) is fair game and
can be tested for – what happens in that case is specified in the handout)

Engineering Science, University of Toronto Page 8 of 8

	FAQ
	What happens if the user starts running again right after they finish? Is this relevant elsewhere?
	Is a third star offered within the span of two hours effective?
	If a stars is offered at 8am, 9am, and 10am, does that make stars ineffective?
	If the user is tired, how many hedons will they get per minute if they take a star?
	If the user runs for 5 minutes (taking a star for running), and then runs for 3 more minutes, do they get the +3 hedons/minute bonus for all the 8 minutes?
	Can stars be given for resting?
	Can two stars be given at the same time?
	Can duration in perform_activity be 0? Can duration be fractional?
	I haven't used any loops in my solutions. Is anything wrong?
	Does resting always give 0 hedons and 0 health points?
	What happens if we perform_activity("textbooks", 150)? Does the user get tired?

