CSC180H1F Algorithm Runtime Analysis — Lecture Notes Fall 2016

1 Introduction

These notes introduce basic runtime analysis of algorithms. We would like to be able to tell if a given
algorithm is time-efficient, and to be able to compare different algorithms.

2 Linear Search and Worst-Case Analysis

Let’s say we have a list L of n integers (i.e., len(L) == n), and we’d like to find out if e is in the list or
not. In Python, we would use:

e in L

to find out.
How might Python do this? If nothing is known about the list, Python would have to compare e to
each element of L:

def linear_search(e, L):
for i in range(len(L)):
if L[i] == e:
return i
return -1

This algorithm is known as linear search.

How many iterations of the for loop will Python perform? It depends. It could be that e == L[0],
and linear_search will return during the first iteration. In the worst case, though, e is not in L, and
Python would have to check every element of L to make sure of that. So, n = 1len(L) iterations of the loop
will be performed before 1linear_search returns.

When we do analysis of algorithms, we usually (though not always) concentrate on the analysis of
the worst-case runtime. That’s mainly because we would like to be able to make a guarantee that our
program will finish within a certain timeframe!.

To get the worst-case number of iterations, we needed to come up with an example of input values (L
and e, in our example) when the worst case happens. Note that in this example, the worst case is for lists of
length n only — obviously longer lists would take longer to process. If the input includes lists, dictionaries,
or other structures that vary in size, we usually fix the size of the input (in this case, the length of L), and
figure out what the worst-case input of any given size is. The number of iterations of an appropriate
loop is proportional to the runtime (in seconds). Instead of counting the number of iterations, we might
also count, for example, the number of comparisons performed. (In the case of linear search, the number
of comparisons performed explicitly is the same as the number of iterations).

3 Binary Search

Is there a faster way to search the list L? There isn’t if L is an arbitrary list — the only way to make sure
that e not in L is to go through every element of L and check. However, if we know that L is sorted, we
can get away with not checking every element.

Tt’s clear that thinking about the best case doesn’t make a lot of sense, but thinking about the average case — how long
the program takes on average (the average would be taken over the runtimes for different inputs) does make sense sometimes,
and is the only option that makes sense for some algorithms.

Engineering Science, University of Toronto Page 1 of 5



CSC180H1F Algorithm Runtime Analysis — Lecture Notes Fall 2016

Here’s why: if we know that e > L[len(L)//2] and that L is sorted, there’s no point in looking in the
left half of L: e is definitely not there. Similarly, if e < L[len(L)//2]1% we can avoid looking in the right
half of L.

So by checking whether e > L[len(L)/2], we can effectively halve the size of the list through which
we need to look. We can then use the same trick to half the size of the remaining list. This algorithm is
called binary search, and it’s the same algorithm that people use when playing Twenty Questions.® In out
case, we might ask: “If e is in L, is it in the first half or the second half?” If we hear “Second,” we ask:
“If e is in L, is e in the third quarter of L or the fourth quarter of L,” and so on, until we finally zero in
on the only possible location of e in L, at which point we can finally check whether it’s there or not.

Here’s an implementation of binary search which returns the index of the element e if it is found:

def binary_search(L, e):
low = 0
high = len(L)-1
while high-low >= 2:

#2 comparisons
mid = (low+high)//2 #e.g. 7//2 ==
if L[mid] > e:
high = mid-1
elif L[mid] < e:
low = mid+1
else:
return mid

if L[low] == e:
return low
elif L[high] == e:
return high

else:
return None

In the worst case, we don’t return until we are done with the while loop. That happens if L doesn’t
contain an element that’s equal to e. How many comparisons will we have in that case? We do 3
comparisons per iteration of the while loop, plus, in the worst case, another 2 comparisons before returning
after the while loop.

For a list L of length n, how many comparisons are performed in total, in the worst case 7 It’s 2+
3x (the number of iterations of the while loop).

How many iterations of the while loop are there, in the worst case? We think about this by figuring
out the length of the sublist still under consideration at every iteration. Approximately, every iteration,
the sublist under consideration becomes smaller by a factor of 2: n,n/2,n/4,n/8,...,1. To get from 1 to n

*We use // to always get an integer index. Recall that // in Python 3 is integer division. For example, 17//2 == 8.

3in Twenty Questions, person A thinks of something or someone, and person B needs to ask at most 20 yes-or-no questions
before taking a guess at what or who person A is thinking of. For example, the game might go: “Is it a person?” “Yes.” “Is
it a celebrity?” “Yes.” “Are they currently alive?” “Yes.” “Is it a woman?” “No.” “Is he an artist?” “Yes.” “Is he a painter?”
“No.” “Is he a musician?” “Yes.” “Is he from North America?”’ “Yes.” “Is he from the U.S.?” “No.” “Is he Canadian?” “Yes.”
“Is he older than 307" “No.” “Is it Justin Bieber?” “Yes.”

Engineering Science, University of Toronto Page 2 of 5



CSC180H1F Algorithm Runtime Analysis — Lecture Notes Fall 2016

by multiplying by 2, it takes log, n iterations (by the definition of log!). So, in the worst case (when e is
not in L), for a list L of length n, binary search performs approximately 2 + 3log, n comparisons.

4 Big-Oh

At the end of the day, we don’t care about the number of iterations of the number of comparisons. What
we care about is how long — in seconds — a program will take to run. If we choose the things we count
— iterations of a certain loop, or operations—well, their number will be proportional to the runtime of the
program in seconds. Because our answer (when the unit is iterations, or number of operations) is merely
proportional to the runtime, we can drop multiplicative constants. Because we care only about what
happens when the input is large, we only retain the fastest-growing term in the expression.

Dropping the multiplicative constant 3 and the slower-growing term 2 (2 doesn’t grow at all!), we say
that binary search runs in O(log(n)) time (note: log(n) is proportional to logy(n), so we drop the 2 as well.

The Big-Oh notation (g(n) is O(f(n))) is used to express an upper bound on what the function g(n)
is proportional to, for large n.

Technically, the function g(n) is O(f(n)) if lim_> sup % < 00. In English, this means that g(n) grows

n o

at most as fast as f(n) for large n. We don’t need to know the technical definition. The important parts
are:

e g(n)is O(ag(n)) for any positive constant a.
e g(n)+ h(n)is O(g(n)) if h(n) grows at most as fast as g(n) for large n (i.e., h(n) is O(g(n)).
This lets us present the runtimes of algorithms in a simplified form:

e 2n+51is O(n).
o In3+5nis O(nd).
e 3nlog;,n + 10000n is O(nlogn).

Note that it is also true to say that 500n is O(n?), since n? grows faster than 500n. We prefer to give
runtime upper bounds that are as tight as possible, so if the algorithm runs in time proportional to 5007,
we’ll say that it runs in O(n) time (even though technically, it also runs in O(n®) time),

5 Algorithm Runtime Analysis: The Steps
e Pick a unit in which you’re measuring the runtime. The number of those units should be proportional
to the actual runtime in seconds.

e Pick a property of the input (e.g., the value, or the length). You'll be computing the runtime as a
function of that property.

e Compute the runtime, in the worst case, in your chosen units

e Simplify the expression

5.1 Units using which we analyze the algorithm

What we really want to measure is the number of seconds in which the algorithm runs. However, we cannot
directly compute that number. Instead, we count the the number of basic operations, or the number of
iterations of the innermost loops, or the number of comparisons performed, or the number of arithmetic

Engineering Science, University of Toronto Page 3 of 5



CSC180H1F Algorithm Runtime Analysis — Lecture Notes Fall 2016

operations performed. The important thing is to make sure that the thing we’re counting is actually
proportional to the runtime — we need to use our common sense here, and also keep in mind that in
Python, some seemingly basic operations can take a lot of time.

For example,

e in L

is not a basic operation. The only way to return True or False there is to check over every element of L
and compare it to e, in the worst case (in the best case, e == L[0], so we can return True pretty fast,
since we’ll discover that e in L pretty fast.) So e in L actually runs in O(n) for n = len(L).

For sorting algorithms, it makes sense to pick comparisons as the unit (by comparisons, we mean
operations like ==, <, >= etc, since the number of those is typically proportional to the runtime.

For simple nested loops, we can generally get away with claiming that the number of times that the
innermost loop repeats is proportional to the runtime. For example, consider the following.

s =0
for i in range(n):
for j in range(n):
s += 1ix*j

The innermost loop repeats n times every time the outer loop runs, so the innermost loop repeats n? times
in total, so O(n?) times. The runtime is also proportional to O(n?).

5.1.1 Summary

We usually would like to count how many times either the innermost loop runs, or how many basic
operations are performed. Those quantities should be proportion to the runtime in seconds.

5.2 Property of the input based on which we calculate the runtime

The kind of question that we want to ask is: “In the worst case, for a list L of length n, what is the runtime
of sorting L using bubble sort?” We might also ask, “In the worst case, for a list L, what is the runtime for
sort it using bubble sort?”

In the first case, the answer is O(n?), when n is len(L). In the second case, we might say that the
runtime is 3 comparisons, for L = [1,2,3], 6 comparisons for L = [3,2,1], etc. (Note: those numbers
were made up.)

It is a decision we make that we analyze the runtime as a function of the length of L. We could, in
principle, also decide to analyze the runtime based on the precise value of L (e.g., [1,2,3], or [3,2,1]).

For lists, we almost always analyze the runtime as a function of the length of the list. In that case, it
makes sense to talk about the worst-case runtime, since the runtime can be different for two different lists
which are both of length n.

For integers, we sometimes analyze the runtime as a function of the walue of n, and sometimes as a
function of the length of n. The length of the integer is just the number of (binary) digits that we need to
write it down. To write down n, we need about logy n+ 1 binary digits. Since log; 0(n) o logy(n) o log(n),
and since we generally ignore additive constants, we sometimes will analyze the runtime of func(n) as a
function of log(n), a quantity proportional to the length of n.

5.2.1 Summary

For lists, we usually want to get the logest possible runtime for a list of length n, as a function of n: O(n),
O(nlog(n)), etc.

Engineering Science, University of Toronto Page 4 of 5



CSC180H1F Algorithm Runtime Analysis — Lecture Notes Fall 2016

5.3 Compute the runtime, in the worst case, in your chosen units

There is no general technique for computing the runtime. For lists, we need to come up with an example
of a list of length n such that the algorithm will run the longest.

5.4 Simplifying the expression

When thinking about the worst-case runtime of the algorithm on input of size/value n, we care about a
tight upper bound on what the runtime is approximately proportional to for large n. That means that if
we have an expression like n? —n + 15, we drop any terms that grow slower than the fastest-growing term,
and any multiplicative constants. If the algorithm runs in time proportional to n? —n + 15, we say it runs
in O(n?) time.

Engineering Science, University of Toronto Page 5 of 5



