ESC 180 H1F Lab #9 Fall 2024

Problem 1.

In this question, you will practice with mutable and immutable objects in Python.

Part (a)
There is only one way for the string s to become something else:

s = "old string"
s = RHS

Write a function that computes the lowercase version of a string (reminder: https://docs.python.
org/3/library/stdtypes.html#str.lower, which you can use inside the function), and then change the
string s using your function.

Demonstrate what happens using pythontutor.com

Part (b)
There are (at least) two ways for the list L to become something else:

o L = g(L)

e (L), where f changes the contents of L.

Start with the string L = [1, 2, 3]. Change the list in the two ways above. Print id(L) before and
after the change, and print L after the change. Explain what happens. Demonstrate what happens using
pythontutor.com.

Write g in such a way that the id(L) changes after the assignment L = g(L), and then also write a

function g1 which does not change the id (L) after the assignment L = g1(L). Demonstrate what happens
using pythontutor. com.

Part (c)

You can compute a shallow copy of a dictionary using d.copy (). Repeat Part (b), but with a dictionary
d instead of a list L.

Part (d)

A shallow copy of a dictionary is fine as long as none of the values are mutable. Demonstrate an issue with
Part (¢) when a shallow copy is used.

Part (e)

You can compute a deep copy of a dictionary using copy.deepcopy (d). (Need to import deepcopy) Repeat
Part (d), but with a deep copy of the dictionary d instead of a shallow copy.
Reference: https://www.programiz.com/python-programming/shallow-deep-copy

Engineering Science, University of Toronto Page 1 of


https://docs.python.org/3/library/stdtypes.html#str.lower
https://docs.python.org/3/library/stdtypes.html#str.lower
https://www.programiz.com/python-programming/shallow-deep-copy

ESC 180 H1F Lab #9 Fall 2024

Problem 2.
Here is the Binary Search code from the notes.

def binary_search(L, e):
low = 0
high = len(L)-1
while high-low >= 2:
mid = (low+high)//2 #e.g. 7//2 ==
if L[mid] > e:
high = mid-1
elif L[mid] < e:
low = mid+1
else:
return mid
if L[low] == e:
return low
elif L[high] == e:
return high
else:
return None

Part (a)
Demonstrate that the code works on sorted lists of size 10 by inputting sample inputs and making sure
that the code runs.

Part (b)

Modify the function to return the number of iterations that the while loop runs for. (Reminder: a function
can return a tuple: the first element might be the index, and the second element the number of times that
the while loop ran for)

Part (c)

In the worst case, binary search does not “return early” because L[mid] is not equal to e. What would be
a way to construct a list L such that that never happens?

Part (d)

For list sizes n being 10, 100, 1000, 10000, ..., 10000000, output the number of iterations that the while
loop takes, in the worst case, by constructing lists such that the number of iterations is as large as it can
be for the given list size.

Part (e)

You can get the number of seconds since Jan 1, 1970 using time.time () after using import time. This
means you can measure the time a function took to run using

Engineering Science, University of Toronto Page 2 of



ESC 180 H1F Lab #9 Fall 2024

import time

start = time.time()
#run function

end = time.time()
print (end-start)

Compare the runtime of “linear search” (using L.index()) and binary search on input sizes 10, 100,

1000, 10000, ..., 10000000, in the worst case, and output the results.
Make your code as nice as possible: for example, write a function that measures the runtime rather

than copy-pasting the code above multiple times.

Problem 3.

Continue working on questions from Lab 8 you have not finished. Note: there is a solutions session here if
you are stuck: https://www.youtube.com/watch?v=—qiwIp4w6Ks

Engineering Science, University of Toronto Page 3 of


https://www.youtube.com/watch?v=-qiwIp4w6Ks

