ESC 180 H1F Lab #6 Fall 2024

In this lab, you will do a warm-up execrsice, then implement a way to store a memory in a Hopfield
Network using Hebbian learning, a historically important algorithm that just needs a for-loop, and then
write a program that lets you play Tic-Tac-Toe against the computer.

See https://en.wikipedia.org/wiki/Tic-tac-toe|for details on the game. In this lab, you should try
to write functions that are as concise as possible. In many cases, this means using loops even if a more
tedious solution that doesn’t use loops is possible.

Bit first, three (mandatory) warm-up questions

Problem 1.

Consider the following list:

L = [["CcIVv", 92],

[*180", 98],
[*103", 99],
["194", 95]]

Write code that prints the element 99 from this list.

Problem 2.

Now, write a function get nums(L)) that takes in a list in a format similar to L, and returns a list like
[92, 98, 99, 95]. Hint: look are the code for the matrix-vector product from lecture, and understand
how the result res was built up.

Problem 3.

Write a function lookup(L, num) that takes in a list like L and an argument like 99 and returns the
corresponding value (like "103"). Return the first value if there are multiple matches. Return None if
there are no matches.

Problem 4.

Note: this is not harder than any other exercise! Just reason through things line-by-line.
In this problem, you will be working with the Hopfield Network from last week.
First, we will modify the code to compute the energy for specific weights and x’s:

def E(x0, x1, x2, w01, w02, wi2):
terml = x0 * x1 * wO1
term2 = x0 * x2 * w02
term3 x1 * x2 *x wi2

return -(terml + term2 + term3)

def print_all_energies(w01l, w02, wi12):
for x0 in [-1, 1]:

Engineering Science, University of Toronto Page 1 of

https://en.wikipedia.org/wiki/Tic-tac-toe

ESC 180 H1F Lab #6 Fall 2024

for x1 in [-1, 1]:
for x2 in [-1, 1]:
print("x: (", x0, x1, x2, ")", "E:", E(xO0, x1, x2, w01, w02, wl2))

This could be used with the weights from last week as follows:

if __name__ == ’__main__’:
w0l = 2
w02 = -1
wi2 = 1

print_all_energies(w01l, w02, wil2)
The output is as follows:

-1 -1-1) E: -2
-1 -11) E: -2
-11-1) E: 4
11)E:0
1-1-1)E:0
1-11) E: 4
11-1) E: -2
111) E: -2

AN~~~ """ A A
[
[

LT T T T T

Recall that the minima of the energy function are “memories”. This means that the network “remem-
bers” the values (—1,-1,—-1),(—-1,-1,1),(1,1,-1),(1,1,1).

We would now like to “store” a new memory in the network. We will do it by adjusting the weights w
a little bit.

The strategy for storing a new memory (zg, 21, z2) is as follows:

1. If xg*x1 > 0, increasing wp; will decrease the energy of the network at (zg, z1,x2), so we will increase
wp1 by 0.1. Otherwise, we will decrease wg; by 0.1.

2. If zg *x x9 > 0, increasing wpy will decrease the energy of the network (zg, 21, z2), so we will increase
w2 by 0.1. Otherwise, we will decrease wgs by 0.1.

3. If zy xx9 > 0, increasing w2 will decrease the energy of the network at (xg, x1, z2), so we will increase
w2 by 0.1. Otherwise, we will decrease w2 by 0.1.
Part (a)
Explain why the claim “If xg*z1 > 0, increasing wp; will decrease the energy of the network at (xg, x1, x2)”
makes sense.
Part (b)

Write three if-statements that execute the strategy above, and verify that the effect of that is to decrease
the energy of the network at (—1,1,1) when z = (—1,1,1).

Note: all we are saying is “write three if-statements and use print_all_energies() to verify that
the energy at (—1,1,1) is decreased.

Engineering Science, University of Toronto Page 2 of

ESC 180 H1F Lab #6 Fall 2024

Part (c)

Write a for-loop that repeadly adjust the weights as above, and uses print_all_energies()
Suggestion: print " " in between iterations to make the output more readable.

Part (d)

Use the for-loop to verify that after about 4 iteration, the new memory is stored.

Part (e)

Put the for-loop in a function. The function should take in the weights and the memory to store, and
should return the weights (as a list with three elements) after the memory is stored.

Part (f)

Use the function to store the memory (1,—1,1) in the network. Note that the function returns a list.
There are several ways to extract the answers from a list. Use tools from the course (i.e., 0-th element of
L is L[0]) to update w01, w02, wi2.

Problem 5.

Your first task is to enable two users to play against each other. Download ttt.py, and understand the
functions for creating an empty board and to print the board and the legend. Run ttt.py and observe
how print_board_and_legend(board) prints the list of lists board, which represents the board.

The goal is to be able to produce a game that goes, for example, as follows:

| | 11213
———t———t-— = ot
I 4 1516
———t———t-— = Bt
I 718109
Enter your move: b5
I 11213
——t——t—— = -
| X | 41516
———t——t—— = -t
I 71819
Enter your move: 1
ol | 11213
e e e ot
| X | 41516
———t———t—— ——= ot
I 71819

Enter your move: 3

Engineering Science, University of Toronto Page 3 of

ESC 180 H1F Lab #6 Fall 2024

Part (a)

Write a function that takes in an integer square_num between 1 and 9, and returns a list coord such that
board [coord[0]] [coord[1]] = "X" would put an "X" in square square_num (an integer from 1 to 9).
Hint: the row number is ((square_num - 1) // 3).

Part (b)

Write a function put_in_board(board, mark, square_num) that modifies the contents of board such
that the string mark ("X" or "0") is put in the coordinates in board that correspond to square_num.

Part (c)

Write a loop that asks for the user to alternately enter coordinates for "X"s and "0"s such that two users
can play against each other as shown in the example above.

Here is a piece of code that counts how many times the user failed to input "hi" when repeatedly
trying.

count = 0

input_str = ""

while input_str != "hi":
input_str = input("Please say hi: ")
count += 1

print (f"The user did not say hi {count} times")

Problem 6.

The goal now is to write a simple function that would have the computer play against the user.

Part (a)

Write a function with the signature get_free_squares(board) which creates and returns a new list which
contains a list of the coordinates of the free squares in the board. For example, if the board is represented
as follows

, the function should return [[0, 1], [1, 0], [1, 21, [2, 1], [2, 2]].

Part (b)

Now write a function make_random_move (board, mark) that finds a random free square in board, and
puts the string mark in the free square. Hint: you can print a random number between 0 and n-1 as
follows:

import random
print(int(n * random.random()))

Engineering Science, University of Toronto Page 4 of

ESC 180 H1F Lab #6 Fall 2024

Part (c)

Now use make_random_move () in order to have the computer play against the user.

Problem 7.

Now, the goal is to automatically figure out if the game is over. The game is over if there is a line of 3
"X"s or a line of 3 "0"s.

Part (a)

Write a function with the signature is_row_all_marks(board, row_i, mark) which returns True iff the
row with index row_i in board contains 3 marks equal to mark.

Part (b)

Write a function with the signature is_col_all_marks(board, col_i, mark) which returns True iff the
column with index row_i in board contains 3 marks equal to mark.

Part (c)

Using the functions above, and also checking the diagonals, write a function with the signature is_win(board, mark)
that returns True iff the mark mark won on the board board (i.e., there is a line of 3 marks somewhere in
board).

Part (d)

Incorporate is_win() into the program such that the game stops when either the user or the computer
win, and prints the result of the game.

Problem 8.

Your job now is to improve the the function that makes the computer’s move.

Part (a)

Write a function which tries to put the computer’s mark in every free square on the board, and checks
whether is_win() returns True for the new board, returns if it does, and removes the mark and tries
to place it in another square otherwise. If there is no square such that putting a mark in it leads to an
immediate win, the function should put mark in a random free square.

Part (b)

Improve the algorithm that plays for the computer as much as you can.

Engineering Science, University of Toronto Page 5 of

