
UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, December 2015

DURATION: 21/2 hours

CSC180H1F — Introduction to Computer Programming

Calculator Type: None
Exam Type: D

Aids allowed: reference sheet distributed with the exam
Examiner(s): M. Guerzhoy

Student Number:

Family Name(s):

Given Name(s):

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 9 questions on 28 pages (in-
cluding this one), printed on both sides of the paper. When you receive the
signal to start, please make sure that your copy is complete, and fill in the
identification section above.

Answer each question directly on this paper, in the space provided, and
use the reverse side of the previous page for rough work. If you need more
space for one of your solutions, use the reverse side of a page or the pages at
the end of the exam and indicate clearly the part of your work that should
be marked.

Write up your solutions carefully! Comments and docstrings are not
required to receive full marks, except where explicitly indicated otherwise.
However, they may help us mark your answers, and part marks might be
given for partial solutions with comments clearly indicating what the missing
parts should accomplish.

When you are asked to write code, no error checking is required: you
may assume that all user input and argument values are valid, except where
explicitly indicated otherwise.

Use the Python 3 programming language. You may not import any
module except math, unless otherwise specified.

A mark of at least 40% (after adjustment, if there is an adjustment)
on this exam is required to obtain a passing grade in the course.

Marking Guide

1: / 15

2: / 15

3: / 20

4: / 15

5: / 8

6: / 6

7: / 5

8: / 6

9: / 10

TOTAL: /100

Page 1 of 28 Good Luck!
May the Force be with you!

over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 2 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 1. [15 marks]

Part (a) [12 marks]

Write a function with the signature is_sorted(L) which takes in a list of ints L, and returns True iff the
list L is sorted, in either non-increasing or non-decreasing order. For example,

is_sorted([4, 5, 6, 1, 2, 3, 7]) should return False,
is_sorted([4, 5, 5, 6]) should return True,
is_sorted([6, 3]) should return True,
is_sorted([]) should return True.

Part (b) [3 marks]

What is the tight asymptotic bound on the worst-case runtime complexity of the function you wrote in
Part (a)? Use Big O notation. You should assume that all the ints are smaller than 32, 000.

Page 3 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 4 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 2. [15 marks]

Write a function with the signature euc_distance(u, v) which computes the Euclidean distance between
the endpoints of the two sparse vectors u and v. Reminder: we store sparse vectors using dictionaries, with
only the non-zero entries being stored. For example, [4, 5, 0, 10, 0] is stored as {1:4, 2:5, 4:10}.
The Euclidean distance between the endpoints of the vectors [u1, u2, u3, ..., uk] and [v1, v2, v3, ..., vk] is√√√√ k∑

i=1

(ui − vi)2.

Reminder: you can assume that the input to the function is valid.

Page 5 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 6 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 3. [20 marks]

Write a function with the signature movies_by_release_date(movies) which takes in a dictionary whose
keys are movie names and whose values are release dates, and which returns a list of movie names, in order
from the most recent release date to the earliest release date. The release dates are either in the format
"<year>, in <location>", or in the format "a long time ago, in <location>". Any movies released
"a long time ago" were released before the movies for which the year is indicated. Movies released at
the same time can be placed in the list in any order.

For example, if movies equals

{"Dude, Where’s My Death Star": "a long time ago, in a galaxy far far away",

"Star Wars: The Force Awakens": "2015, in Los Angeles",

"Star Wars": "1977, in Los Angeles",

"Sleepless in Aldera": "a long time ago, in Alderaan City",

"Jurassic World": "2015, in New York"},

movies_by_release_year(movies) can return

["Jurassic World", "Star Wars: The Force Awakens", "Star Wars",

"Sleepless in Aldera", "Dude, Where’s My Death Star"].

Part marks may be given for clearly-documented helper functions accompanied by clear and concise

explanations of how they would help with the overall solution. However, as with the other questions, full

marks can be given for correct solutions that are not commented or separated into functions.

Page 7 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 8 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Extra space for solutions

Page 9 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 10 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 4. [15 marks]

Write a recursive function with the signature merge(L1, L2) which takes in two lists sorted in non-
decreasing order, and returns a list that contains all the elements from both L1 and L2, and is itself sorted.
You may not use loops, global variables, or helper functions, and the function signature must
be exactly as specified (i.e., you may not add additional parameters). You may not use Python’s
sorted() and sort() functions. You may use slicing.

For example, merge([4, 8, 10], [2, 5]) should return [2, 4, 5, 8, 10].

Page 11 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 12 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 5. [8 marks]

Each of the subquestions in this question contains a piece of code. Treat each piece of code independently
(i.e., code in one question is not related to code in another), and write the expected output for each
piece of code. If the code produces an error, write down the output that the code prints before the error
is encountered, and then write “ERROR.” You do not have to specify what kind of error it is.

Part (a) [2 marks]

def f():

print("Solo shot first")

def g():

print("Greedo shot first")

def h(g):

g()

h(f)

Part (b) [2 marks]

L = [[5, 6], [7, 8]]

M = L[:][:]

M[1] = [3, 4]

M[0][1] = 2

print(L)

Part (c) [2 marks]

def f(L, M):

global L

L = M

L[0] = 3

M = [1, 2]

L = [3, 4]

f(L, M)

print(M[0])

Part (d) [2 marks]

s1 = "Happy Holidays!"

s2 = s1

s1 = "HO HO HO"

print(s2)

Page 13 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 14 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 6. [6 marks]

The left-hand column in the table below contains different pieces of code that work with list L, string s

and integer n. In the right-hand column, give the asymptotic tight upper bound on the worst-case runtime
complexity of each piece of code, using Big O notation.

Code Complexity

L is a list of floats with n = len(L)

total = 0.0

for i in range(len(L)):

if L[i] > 0.0:

total += L[i]

L is a list with n = len(L)

a = 5.0

for i in range(n):

for j in range(i % 2):

a += 1

L is a list with n = len(L)

def f(L, i, j):

if j-i <= 1:

return L[i]

if L[i] == 0:

return f(L, i, i + (j-i)//2)

else:

return f(L, i + (j-i)//2, j)

f(L, len(L)//5, len(L)//4)

Page 15 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 16 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 7. [5 marks]

What is the tight asymptotic upper bound on the runtime complexity of the Forward Step of the Gaussian
Elimination algorithm, applied to a matrix of floats of size m × n (i.e., m rows and n columns)? Use
Big O notation. Justify your answer (a formal proof is not required; we should simply be able to under-
stand how you got the answer). An example of a run of the Forward Step is provided on the reference sheet.

Answer:

Page 17 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 18 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 8. [6 marks]

Consider the following code

def mystery_helper(L1, L2):

L = L1 + L2

for i in range(len(L)):

m, loc_m = L[i], i

for j in range(i, len(L)):

if L[j] > m:

m, loc_m = L[j], j

L[i], L[loc_m] = L[loc_m], L[i]

return L

def mystery(L):

step = 1

while step <= len(L):

for partition_start in range(0, len(L), 2*step):

start1 = partition_start + 0 * step

end1 = partition_start + 1 * step

start2 = end1

end2 = partition_start + 2 * step

L[start1:end2] = mystery_helper(L[start1:end1], L[start2:end2])

step *= 2

Part (a) [1 mark]

State clearly and concisely what mystery_helper(L1, L2) returns.

Part (b) [2 marks]

State clearly and concisely what mystery(L) does.

Page 19 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 20 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Part (c) [3 marks]

What is the tight asymptotic upper bound on the worst-case runtime complexity of mystery(L), where
n = len(L)? Use Big O notation. Explain how you got your answer to this subquestion. You may assume
that L is a list of floats.

Page 21 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 22 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Question 9. [10 marks]

Write a function with the signature x_can_win(board) which takes in a 3 × 3 tic-tac-toe board, stored as
a list of lists, and returns True iff the player who plays "X" has a winning strategy starting from the state
of the board, assuming it is "X"’s move. That is, x_can_win(board) should return True if and only if "X"
can always eventually win starting from the state of the board if "X" plays correctly, no matter how "O"

plays.
Santa is giving you the function x_won(board), which returns True iff there is a (vertical, horizontal,

or diagonal) row of 3 "X"s somewhere on the board. You can use the function.
The list of lists board is in the following format (which is identical to what was used in the lab.)
board == [["O", " ", " "], ["X", "O", "X"], ["X", "O", " "]] means that the position is

O | |

---+---+---

X | O | X

---+---+---

X | O |

For example, x_can_win([[" ", " ", " "], [" ", "X", "O"], [" ", " ", " "]]) should return True

and x_can_win([["O", " ", " "], ["X", "O", "X"], ["X", "O", " "]]) should return False.

For this question, you will receive 2 marks if you answer “I don’t know.” Part marks will only be given for
making substnatial progress toward a solution.

Page 23 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 24 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Extra space for solutions

Page 25 of 28 Student #: over. . .

Use this page for rough work—clearly indicate any section(s) to be marked.

Page 26 of 28 cont’d. . .

December 2015 Final Examination CSC 180 H1F

Extra space for solutions

Page 27 of 28 Student #: over. . .

CSC 180 H1F Final Examination December 2015

PLEASE WRITE NOTHING ON THIS PAGE

Page 28 of 28 Total Marks = 100 End of Final Examination

