str.capitalize ()
Return a copy of the string with its first character capitalized and the rest

lowercased .

str.count(sub[, start[, end]])

Return the number of non—overlapping occurrences of substring sub in the range
[start , end]. Optional arguments start and end are interpreted as in

slice notation.

str.endswith(suffix [, start[, end]])

Return True if the string ends with the specified suffix, otherwise return
False. suffix can also be a tuple of suffixes to look for. With optional
start , test beginning at that position. With optional end, “stop comparing
at that position.

str.index(sub[, start[, end]])
Like find (), but raise ValueError when the substring is. not found.

str.isalnum ()

Return true if all characters in the string are ‘alphanumeric and there is at
least one character, false otherwise. A character c¢ is alphanumeric if one
of the following returns True: c.isalphal(), cuisdecimal (), c.isdigit (),
or c.isnumeric ().

str.isalpha ()
Return true if all characters in the string are alphabetic and there is at
least one character, false otherwise. “Alphabetic characters are those

characters defined in the Unicode“character database as Letter , 1.e
., those with general category property being one of Lm , Lt ,
Lu , L1 , or Lo . Note that this is different from the

Alphabetic property defined in the Unicode Standard.

str.isdecimal ()

Return true if all characters in the string are decimal characters and there
is at least one/ character, false otherwise. Decimal characters are those
from general “category Nd . This category includes digit characters,
and all characters that can be used to form decimal-radix numbers, e.g. U
40660, ARABIC-INDIC DIGIT ZERO.

str.isdigit ()

Return” true if- all characters in the string are digits and there is at least
onewcharacter , false otherwise. Digits include decimal characters and
digits that need special handling, such as the compatibility superscript
digits. Formally, a digit is a character that has the property value
Numeric_Type=Digit or Numeric_.Type=Decimal.

str.islower ()
Return true if all cased characters [4] in the string are lowercase and there
is at least one cased character, false otherwise.

str.isnumeric ()

Return true if all characters in the string are numeric characters, and there
is at least one character, false otherwise. Numeric characters include
digit characters, and all characters that have the Unicode numeric value
property , e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally , numeric
characters are those with the property value Numeric_.Type=Digit ,
Numeric_Type=Decimal or Numeric_Type=Numeric.

str.isspace ()
Return true if there are only whitespace characters in the string and there is
at least one character, false otherwise. Whitespace characters are those

characters defined in the Unicode character database as Other or
Separator and those with bidirectional property being omne of
W S , B , or S

str.isupper ()
Return true if all cased characters [4] in the string are uppercase and there
is at least one cased character, false otherwise.

str.join (iterable)

Return a string which is the concatenation of theé.strings in the iterable
iterable. A TypeError will be raised if there are any non—string values in
iterable , including bytes objects. The separator’ between elements is the
string providing this method.

str.lower ()
Return a copy of the string with allr the cased characters [4] converted to
lowercase.

str.replace(old, new[, count])

Return a copy of the string with 'all ‘occurrences of substring old replaced by
new. If the optional argument count is given, only the first count
occurrences are replaced.

str.split (sep=None, maxsplit=—1)

Return a list of the words/in the string, using sep as the delimiter string.
If maxsplit is given, at most maxsplit splits are done (thus, the list
will have at.most maxsplit+1 elements). If maxsplit is not specified or
—1, then~sthere is' no limit on the number of splits (all possible splits
are made)-

If sep” is, givem', consecutive delimiters are not grouped together and are

deemed to delimit empty strings (for example, ’1,,2’.split(’,’) returns
[717,%)7, ’27]). The sep argument may consist of multiple characters (for
example , '1<>2<>3".split ("<>’) returns [’1’, ’2’, ’3’]). Splitting an

empty string with a specified separator returns [’’].

If sep is not specified or is None, a different splitting algorithm is applied
runs of consecutive whitespace are regarded as a single separator, and
the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty

string or a string consisting of just whitespace with a None separator
returns [].

str.startswith (prefix[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix
can also be a tuple of prefixes to look for. With optional start, test
string beginning at that position. With optional end, stop comparing
string at that position.

str.strip ([chars])

Return a copy of the string with the leading and trailing characters’ removed.
The chars argument is a string specifying the set of characters to.be
removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all
combinations of its values are stripped:

str.upper ()
Return a copy of the string with all the cased characters [4]\ converted to

uppercase. Note that str.upper().isupper () might be \False if s contains
uncased characters or if the Unicode category efuthe resulting character (s
) is not Lu (Letter , uppercase), but e g. Lt (Letter
titlecase).

my_int = 42

my_str = "the answer to life the universe and everything”
my_float = 3.14

print("%d is %s, not %f” % (my_int, my.str, my_float))

dict methods

clear ()
Remove all items from +the)dictionary .

copy ()
Return a shallow<copy of,/ the dictionary.

get (key [, default])

Return the/value “for key if key is in the dictionary , else default. If default
is not 'given), it defaults to None, so that this method never raises a
KeyError.

items ()
Return a mnew view of the dictionary’s items ((key, value) pairs).

keys ()
Return a new view of the dictionary’s keys.

pop(key [, default])
If key is in the dictionary , remove it and return its value, else return
default. If default is not given and key is not in the dictionary, a

KeyError is raised.

popitem ()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used
in set algorithms. If the dictionary is empty, calling popitem () raises a
KeyError.

setdefault (key [, default])
If key is in the dictionary , return its wvalue. If not, insert key with a value
of default and return default. default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwrtiting
existing keys. Return None.

update () accepts either another dictionary object or am. iterable of key/value
pairs (as tuples or other iterables of length two). \If keyword arguments
are specified , the dictionary is then updated with those key/value pairs:
d.update(red=1, blue=2).

values ()
Return a new view of the dictionary’s values.

x in s True if an item of s is equal to x, else False

x not in s False if an item of s is equal to x, else True

s + t the concatenation of s and t

s * n or n * s n shallow copies of s concatenated

s[i] ith item of s, origin 0

s[izj] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

s.index(x], i[, j]]) index’of the first’occurrence of x in s (at or after index i and before index j)
s.count(x) total number of ocgurrences of x in s

s[i] = x item i of s is-replaced by x

s[izj] = t slice of s from:i to j is replaced by the contents of the iterable t

del s[i:j] same as sli;j] =]

s[i:j:k] =1 the'elements of s[i:j:k] are replaced by those of t

del sisj:k] removes the elements of si:j:k] from the list

s.append(x) appends x to the end of the sequence (same as s[len(s):len(s)] = [x])

siclear(), removes all items from s (same as del s[:])

s.copy() ereates a shallow copy of s (same as s[:])

sextend(t) extends s with the contents of t (same as s[len(s):len(s)] = t)
s.nsert(i, x) inserts x into s at the index given by i (same as s[i:i] = [x])
s.pop(]i]) retrieves the item at i and also removes it from s

s.remove(x) remove the first item from s where s[i] == x

s.reverse() reverses the items of s in place

r:*r'brrr'

= [3, 2, 10]
.sort () #L is now [2, 3, 10]
- 13

2, 10]
1= sorted() #L1 is now [2, 3, 10], a new list
= [3, 2, 10]

2 = sorted (L, reverse=True) #L2 is now [10, 3, 2], a new list

The following examples all return a dictionary equal to {"one": 1, "two": 2,
{’one’: 1, ’two’: 2, ’three’: 3}

dict([(’two’, 2), (Pone’, 1), (’three’, 3)])

Also:

>> list({"one": 1, "two": 2, "three": 3}.items())

[(’three’, 3), (’two’, 2), (Pone’, 1)]

"three":

3}

1
1+2+3+4+...+n=@
. 1— n+1
1+r+r2+7"3+...+r”:+
- T

n = alogan

The matrix is currently:
(Lo. o. 1. 0. 2.]

[1. 0. 2. 3. 4.]
[3. 0. 4. 2. 1.]
(1. o. 1. 1. 2.]]

Now looking at row O
Swapping rows O and 1 so that
The matrix is currently:
[(C1. 0. 2. 3. 4.]

[o. 0. 1. 0. 2.]
[3. 0. 4. 2. 1.]
[1. o. 1. 1. 2.]1]

Adding row O to rows below it
The matrix is currently:

(C 1. 0. 2. 3. 4.]
[0. © 1. 0 2.]
[0. 0. -2. -7. -11.]
[0. 0. -1. -2. -2.1]

entry O in the current row is non-zero

to eliminate coefficients in column O

Now looking at row 1

Swapping rows 1 and 1 so that
The matrix is currently:

[1. 0. 2. 3. 4.]

[o. 0. 1. 0. 2.]

[o. 0. -2. -7. -11.]

[o. 0. -1. -2. -2.1]
Adding row 1 to rows below it
The matrix is currently:
[([1. 0. 2. 3. 4.]

[o. 0. 1. 0. 2.]
[o. 0. 0. -7.-7.]
[0. 0. 0. -2. 0.]]

entry 2 in the current row.is/‘mon-zero

to eliminate coefficients in column 2

Now looking at row 2
Swapping rows 2 and 2 so that
The matrix is currently:
[(C1. 0. 2. 3. 74.]

[0. 0. 1. 0w.2.]

[0. 0. 0.=7..-7.]

[0. 0. 0.-2.. 0.]
Adding row 2 to rows below it
The matrix is currently:

[[1. 0. 2..3. 4.]

[0. 0.%1. 0. 2.1
[0 0y 0. -7. -7.]
[0...0. 0. 0. 2.]]

entry 3 in the current row is non-zero

to eliminate coefficients in column 3

Now looking at row 3
Swapping rows 3 and 3 so that
The matrix is currently:
[([1. 0. 2. 3. 4.]

entry 4 in the current row is non-zero

[O. 1. 0. 2.]
(0. 0. 0.-7.-7.]
[0o. 0. 0. 0. 2.]]
Adding row 3 to rows below it to eliminate coefficients in column 4
The matrix is currently:

[[1. 0. 2. 3. 4.]
[0. 0. 1. 0. 2.]
[0o. 0. 0. -7.-7.]
[o0. 0. 0. 0. 2.1

Done with the forward step
The matrix is currently:
(C1. o. 2. 3. 4.]

[o. 0. 1. 0. 2.]
[o. 0. 0. -7.-7.]
[0o. 0. 0. 0. 2.]]

