1. Write a detailed structured proof that $5n^4 - 3n^2 + 1$ is $\mathcal{O}(6n^5 - 4n^3 + 2n)$.

Proof outline: By definition of “\mathcal{O}”, we have to show

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5n^4 - 3n^2 + 1 \leq c(6n^5 - 4n^3 + 2n).$$

This can be done using the following proof structure.

Let $c' = \ldots$ Then $c' \in \mathbb{R}^+$.

Let $B' = \ldots$ Then $B' \in \mathbb{N}$.

Assume $n \in \mathbb{N}$ and $n \geq B'$.

...show that $5n^4 - 3n^2 + 1 \leq c'(6n^5 - 4n^3 + 2n)$...

Then $\forall n \in \mathbb{N}, n \geq B' \Rightarrow 5n^4 - 3n^2 + 1 \leq c'(6n^5 - 4n^3 + 2n)$.

Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5n^4 - 3n^2 + 1 \leq c(6n^5 - 4n^3 + 2n)$.

Scratch work: Working “forward” from the left-hand side, we get:

$$5n^4 - 3n^2 + 1 \leq 5n^4 + 1$$

$$\leq 5n^4 + n^4 \quad \text{if } n \geq 1$$

$$\leq 6n^4$$

$$\leq n \cdot n^4 \quad \text{if } n \geq 6$$

$$\leq n^5$$

(Note that there are other inequalities we could have reached, e.g., $6n^4 \leq 6n^5$ for all $n \geq 1$.)

Working “backward” from the right-hand side, we get:

$$6n^5 - 4n^3 + 2n \geq 6n^5 - 4n^3$$

$$\geq 6n^5 - 4n^5 \quad \text{because } -n^3 \geq -n^5$$

$$\geq 2n^5$$

$$\geq n^5$$

Since both chains of inequalities connect, we are done: we can pick $B = 6$ (because we require $n \geq 6$ in our first chain) and $c = 1$.

Proof: (This is the actual final “solution”. We skip the formal introduction of B' and c' and instead, simply use their values directly. This style of proof is fine, and it is a little less verbose than using “B''” and “c''” throughout the argument.)

Assume $n \in \mathbb{N}$ and $n \geq 6$.

Then, $5n^4 - 3n^2 + 1 \leq 5n^4 + 1$

$$\leq 5n^4 + n^4 \quad \text{since } n \geq 6 > 1$$

$$\leq 6n^4$$

$$\leq n \cdot n^4 \quad \text{since } n \geq 6$$

$$\leq 2n^5$$

$$\leq 6n^5 - 4n^5$$

$$\leq 6n^5 - 4n^3 \quad \text{since } -n^5 \leq -n^3$$

$$\leq 6n^5 - 4n^3 + 2n.$$

Then $\forall n \in \mathbb{N}, n \geq 6 \Rightarrow 5n^4 - 3n^2 + 1 \leq 6n^5 - 4n^3 + 2n$.

Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5n^4 - 3n^2 + 1 \leq c(6n^5 - 4n^3 + 2n)$. # pick $B = 6$ and $c = 1$

Then $5n^4 - 3n^2 + 1 \in \mathcal{O}(6n^5 - 4n^3 + 2n)$, by definition.
2. Write a detailed structured proof that \(6n^5 - 4n^3 + 2n\) is not \(O(5n^4 - 3n^2 + 1)\).

Proof outline: From the negated definition of “\(O\)”, we have to prove

\[
\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land 6n^5 - 4n^3 + 2n > c(5n^4 - 3n^2 + 1)
\]

This can be done with the following proof structure.

Assume \(c \in \mathbb{R}^+\) and \(B \in \mathbb{N}\).

Let \(n_0 = \ldots \) # an expression containing \(B\) and \(c\)

...show that \(n_0 \in \mathbb{N}\)...

...show that \(n_0 \geq B\)...

...show that \(6n_0^5 - 4n_0^3 + 2n_0 > c(5n_0^4 - 3n_0^2 + 1)\)...

Then, \(\exists n \in \mathbb{N}, n \geq B \land 6n^5 - 4n^3 + 2n > c(5n^4 - 3n^2 + 1)\).

Scratch work: The property of \(n_0\) that will be most difficult to show is \(6n_0^5 - 4n_0^3 + 2n_0 > c(5n_0^4 - 3n_0^2 + 1)\), so we focus on it first. It is tempting to try to solve for \(n_0\) — and if the expression were simpler, this would yield an appropriate value. But it will be complicated in this case, and it is not necessary. Remember that, intuitively, we are simply trying to prove that \(6n^5 - 4n^3 + 2n\) is larger than \(5n^4 - 3n^2 + 1\) by more than a constant factor.

Working “forward” from the left-hand side, we get:

\[
\begin{align*}
6n^5 - 4n^3 + 2n &> 6n^5 - 4n^3 \\
&\geq 6n^5 - 4n^5 \\
&= 2n^5
\end{align*}
\]

Working “backward” from the right-hand side, we get:

\[
\begin{align*}
5n^4 - 3n^2 + 1 &< 5n^4 + 1 \\
&\leq 6n^4 \\
&\quad \text{if } n \geq 1
\end{align*}
\]

Now, we want \(2n^5 > c(6n^4)\), i.e., \(n^5 > 3cn^4\). This will be true as long as \(n > 3c\). Since \(c \in \mathbb{R}^+\), to ensure \(n \in \mathbb{N}\), we can pick any value \(n \geq \lceil 3c \rceil + 1\). This guarantees \(n \geq 1\), which is needed for the inequalities above to hold. Finally, we also need \(n \geq B\), which can be achieved simply by picking \(n = B + \lceil 3c \rceil + 1\).

Proof:

Assume \(c \in \mathbb{R}^+\) and \(B \in \mathbb{N}\).

Let \(n_0 = B + \lceil 3c \rceil + 1\).

Then \(n_0 \in \mathbb{N}\) because \(B \in \mathbb{N}\) and \(\lceil 3c \rceil \in \mathbb{N}\) for all \(c \in \mathbb{R}^+\).

Then \(n_0 \geq B\) (in fact, \(n_0 > B\)).

Then \(6n_0^5 - 4n_0^3 + 2n_0 > 6n_0^5 - 4n_0^5\) since \(n_0 \geq 1\)

\[
\begin{align*}
&\geq 6n_0^5 - 4n_0^5 \\
&= 2n_0^5
\end{align*}
\]

\[
\begin{align*}
&= n_0(2n_0^4) \\
&\geq 3c(2n_0^4) \\
&= c(6n_0^4) \\
&\geq c(5n_0^4 + 1) \\
&\geq c(5n_0^4 - 3n_0^2 + 1).
\end{align*}
\]

Then, \(\exists n \in \mathbb{N}, n \geq B \land 6n^5 - 4n^3 + 2n > c(5n^4 - 3n^2 + 1)\).

Then, \(\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land 6n^5 - 4n^3 + 2n > c(5n^4 - 3n^2 + 1)\).

Then \(6n^5 - 4n^3 + 2n \notin O(5n^4 - 3n^2 + 1)\), by definition.