Prove or disprove each of the following statements. Write detailed proof structures and justify your work.

1. For all real numbers \(r, s \), if \(r \) and \(s \) are both positive, then \(\sqrt{r} + \sqrt{s} \neq \sqrt{r+s} \).

First, write the statement symbolically:

\[
\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}
\]

Second, try a direct proof:

Assume \(r \in \mathbb{R} \) and \(s \in \mathbb{R} \)

Assume \(r > 0 \) and \(s > 0 \)

Then, \(\sqrt{r} + \sqrt{s} = \ldots \) No obvious way to continue.

Next, try an indirect proof:

Assume \(r \in \mathbb{R} \) and \(s \in \mathbb{R} \).

Assume \(\sqrt{r} + \sqrt{s} = \sqrt{r+s} \).

Then, \((\sqrt{r} + \sqrt{s})^2 = (\sqrt{r+s})^2 \). \# square both sides

Then, \((\sqrt{r})^2 + 2\sqrt{rs} + (\sqrt{s})^2 = r + s \). \# expand both sides

Then, \(2\sqrt{rs} = 0 \). \# subtract \(r + s \) from both sides

Then, \(rs = 0 \). \# divide by 2 and square both sides

Then, \(r = 0 \lor s = 0 \).

\# Now, do a sub-proof by cases.

Assume \(r = 0 \).

Then, \(r \neq 0 \).

Then, \(r \neq 0 \lor s \neq 0 \).

Then, \(\neg (r > 0 \land s > 0) \).

Assume \(s = 0 \).

Then, \(s \neq 0 \).

Then, \(r \neq 0 \lor s \neq 0 \).

Then, \(\neg (r > 0 \land s > 0) \).

In either case, \(\neg (r > 0 \land s > 0) \).

Then, \(\sqrt{r} + \sqrt{s} = \sqrt{r+s} \Rightarrow \neg (r > 0 \land s > 0) \)

Then, \(r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s} \).

Then, \(\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s} \).
2. For all real numbers x and y, $x^4 + x^3 y - xy^3 - y^4 = 0$ exactly when $x = \pm y$.

First, write the statement symbolically (be careful to handle that “±” correctly):

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^4 + x^3 y - xy^3 - y^4 = 0 \iff (x = y \lor x = -y)$$

Second, start the proof structure for the universal quantifiers:

Assume $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

`# To prove an equivalence, we prove the implication in each direction.`

First assume $x^4 + x^3 y - xy^3 - y^4 = 0$.

Then, $x^3(x + y) - y^3(x + y) = 0$. # factor out the expression

Then, $(x^3 - y^3)(x + y) = 0$. # factor out the expression

Then, $x^3 - y^3 = 0 \lor x + y = 0$. # $ab = 0 \iff a = 0 \lor b = 0$

`# Now, do a sub-proof by cases.`

Assume $x^3 - y^3 = 0$

Then, $x^3 = y^3$. # add y^3 to both sides

Then, $x = y$ # take cube roots on both sides, cube root is one-to-one so we can do it

Then, $x = y \lor x = -y$ # introduce \lor

Assume $x + y = 0$

Then, $x = -y$ # subtract y from both sides

Then, $x = y \lor x = -y$ # introduce \lor

In either case, $x = y \lor x = -y$.

Then, $x^4 + x^3 y - xy^3 - y^4 = 0 \implies x = \pm y$.

Next assume $x = \pm y$.

Then, $x = y \lor x = -y$. # expand “±”

`# Now, do a sub-proof by cases.`

Assume $x = y$.

Then, $x^3 = y^3$. # cube both sides

Then, $x^3 - y^3 = 0$. # subtract y^3 from both sides

Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by $(x + y)$

Then, $x^4 + x^3 y - xy^3 - y^4 = 0$. # expand

Assume $x = -y$.

Then, $x + y = 0$. # add y to both sides

Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by $(x^3 - y^3)$

Then, $x^4 + x^3 y - xy^3 - y^4 = 0$. # expand

In both cases, $x^4 + x^3 y - xy^3 - y^4 = 0$.

Then, $x = \pm y \implies x^4 + x^3 y - xy^3 - y^4 = 0$.

Then, $x^4 + x^3 y - xy^3 - y^4 = 0 \iff x = \pm y$. # introduce \iff

Then, $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^4 + x^3 y - xy^3 - y^4 = 0 \iff (x = y \lor x = -y)$.

Notice how the detailed proof structure makes it easy to keep track of assumptions, and cases and sub-cases, and to know exactly when we are done.