CSC165, Summer 2014 Supplementary notes: Week 1

1 $\sqrt{2}$ is irrational

 \mathbb{R} is the set of all real numbers. There are several ways to define real numbers. One way is to say that \mathbb{R} is the set of all numbers that can be written as infinite decimal fractions (e.g., 1.0000..., 5.25000000000..., 100.112123123412345123456..., π).

Basically, rational numbers are all the fractions (this includes fractions like -5/1, i.e., whole numbers). Formally, we can define rational numbers like this:

Definition 1. x is rational if x = p/q for some whole number p and natural number q.

We denote the set of rational numbers by \mathbb{Q} (for quotient).

Definition 2. *x* is *irrational* if $x \in \mathbb{R}$ and $x \notin \mathbb{Q}$.

Here's how we can prove that $\sqrt{2}$ is irrational. Suppose $\sqrt{2}$ is rational. Then there are whole numbers p and q such that $\sqrt{2} = p/q$, and we can assume that p and q do not have common divisors since you can always reduce a fraction. In other words, $q = q_1q_2...q_n$, $p = p_1p_2...p_m$ where the q_i and the p_i are prime and $q_i \neq p_j$ always. But $2 = p^2/q^2$ so that p^2 and q^2 have a common factor, namely q^2 ! But if p and q don't have common factors, then p^2 and q^2 don't either, since the prime factors of p^2 and q^2 are just $\{p_1, p_2, ...p_n\}$ and $\{q_1, q_2, ...q_n\}$. So if we assume that $\sqrt{2} = p/q$ where p and q do not have a common factor, we conclude that p^2 and q^2 both do and don't have a common factor! So our assumption must have been wrong. So it can't be the case that $\sqrt{2} = p/q$ where p and q do not have a common factor. So it can't be the case that $\sqrt{2} = p/q$ where p and q do not have a common factor. So it can't be the case that $\sqrt{2} = p/q$ where p and q do not have a common factor.