
CSC165, Summer 2014

A Primer on Proving Inequalities

1 Introduction

In this primer, we describe some elementary techniques for proving inequalities. Here are some properties of
inequalities (some of those are taken from Section 1.5 of the notes): For anye x ∈ R, y ∈ R, w ∈ R, z ∈ R:

(x < y) ∧ (w 6 z)⇒ [x + w < y + z] (1)

(x < y) ∧ (z > 0)⇒ [xz < yz] (2)

(x < y) ∧ (z < 0)⇒ [xz > yz] (3)

(x < y) ∧ (y 6 z)⇒ [x < z] (4)

(x 6 y) ∧ (y < z)⇒ [x < z] (5)

(x 6 y) ∧ (y 6 z)⇒ [x 6 z] (6)

|x + y| 6 |x|+ |y| (7)

x2 > 0 (8)

2 (x < y) ∧ (z > 0) ⇒ [xz < yz], (x < y) ∧ (z < 0) ⇒ [xz > yz]

Basically, multiplying (or dividing) by a positive number preserves the inequality. Multiplying (or dividing)
by a negative number “flips” the inequality.

For example, for real numbers a and b,

a > b⇔ −b < −a,

since we transform the inequality by multiplying it by −1, which is a negative number (both going left-to-right
and right-to-left).

For a positive natural number n,
n2 > 1⇔ n3 > n,

since we transform the inequality by multiplying it by n (going left-right) or dividing it by n (going right-
to-left), and n is a positive number by assumption1

Keep in mind that if z is 0, the inequality is not preserved: 1 < 2, but it is not the case that 0 ∗ 1 = 0 ∗ 2.
It is, however, true that (x < y) ∧ (z > 0)⇒ [xz 6 yz], with xz = yz happening when z = 0.

1Strictly speaking the assumption that n is positive (i.e., not zero) is not needed there, since it follows from both n2 > 1
and n3 > n.
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3 (x < y) ∧ (w 6 z) ⇒ [x + w < y + z]

First, it’s important to have the intuition for why this is true. Imagine you’re starting with

x < y.

Now if we add the smaller value (w) to the left-hand side (LHS), which is smaller to begin with, and the larger
(or equal to w) value (z) to the right-hand side (RHS), then the inequality still holds (i.e., [x + w < y + z]
is true).

Suppose that we would like to prove that, for any n > 1,

6n3 > 3n + 2.

The idea is to use that for any n > 1, 3n3 > 3n and 2n3 > 2.
First, we prove that for any natural n > 1 and any positive real a, an3 > an:

Assume n ∈ N, a ∈ R>0

Assume n > 1
Then n2 = n ∗ n > n ∗ 1 = n > 1 # multiplication by a positive number n, algebra,
assumption that n > 1
Then n2 > 1 # omit intermediate terms in the line above
Also an > a ∗ 1 > 0 # multiply both sides of an inequality by 3 > 0
Then an3 > an # multiply both sides of an inequality by 3n > 0

Then [n > 1]⇒ an3 > an # introduce implication
Then ∀n ∈ N,∀a ∈ R>0, [n > 1]⇒ an3 > an # introduce universal twice

Note that in order to obtain this proof, we could start with the the thing we’re trying to prove, and
“work backwards:” Start at an3 > an, and then divide by an to get n2 > 1. When presenting the proof, we
first prove n2 > 1 (which is true since n > 1), and then get to 3n3 > 3n, but we know where to start because
we started with what we wanted to prove and then worked backwards.

You can similarly prove that 2n3 > 2 for n > 1.
Now we can prove that for any n > 1, 6n3 > 3n + 2. We start at what we’re trying to prove and work

backwards to obtain the proof. But be careful: when working backwards, we need to make sure that the
derivation will actually be correct when presenting it going “forward.”

We start at 6n3 > 3n + 2. This is implied by n3 + 3n3 + 2n3 > 3n + 2 (we have just re-expressed the
LHS.) This is implied by n3 + 2n3 > 2 since for n > 1 since we proved that an3 > an for positive a (and we
can set a = 3). (Note that it’s not true that for n > 1, n3 + 3n3 + 2n3 > 3n + 2 ⇒ n3 + 2n3 > 2, but it is
true that for n > 1, n3 + 2n3 > 2⇒ n3 + 3n3 + 2n3 > 3n+ 2. The direction in which we work is important.)
Now n3 + 2n3 > 2 is implied by n3 > 0 since we can prove (but haven’t proven here that 2n3 > 2 for n > 1.
n3 > 0 is true since n > 0, and so n ∗ n2 > 0 ∗ n2 since n2 > 0.

We now prove the statement by working backwards.

Assume n ∈ N
Assume n > 1

Then n > 0 # n > 1 > 0
Then n2 ∗ n > n20 # n2 > 0
Then n3 > 0 # algebra
Then n3 + 3n3 > 3n # 3n3 > 3n for n > 1 proved above, n > 1 by assumption, (x <
y) ∧ (z > 0)⇒ [xz < yz]
Then n3 + 3n3 + 2n2 > 3n + 2 # 2n2 > 2 for n > 1 proved by the reader, n > 1 by
assumption, (x < y) ∧ (z > 0)⇒ [xz < yz]
Then 6n3 > 3n + 2 # algebra

Then [n > 1]⇒ 6n3 > 3n + 2 # introduce implication
Then ∀n ∈ N, [n > 1]⇒ 6n3 > 3n + 2 # introduce universal
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4 x2 > 0

The square of any real number is non-negative. Why is this true? One way to see it is to say that x2 = x∗x,
so it’s either a product of two negative numbers or a product of two non-negative numbers. Either way, it’s
non-negative.

The property x2 > 0 is sometimes useful in itself. Here’s another instance where it’s useful. To prove
that x2 − 2x + 2 > 0, we might say x2 − 2x + 2 = x2 − 2x + 1 + 1 = (x− 1)2 + 1 > 0, where the last step is
justified by starting with 1 > 0, and then adding (x− 1)2 to the LHS and 0 to the RHS.
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