CSC165, Summer 2014 A Primer on Proving Inequalities

Introduction 1

In this primer, we describe some elementary techniques for proving inequalities. Here are some properties of inequalities (some of those are taken from Section 1.5 of the notes): For any $x \in \mathbb{R}, y \in \mathbb{R}, w \in \mathbb{R}, z \in \mathbb{R}$:

$$(x < y) \land (w \leqslant z) \Rightarrow [x + w < y + z] \tag{1}$$

$$(x < y) \land (z > 0) \Rightarrow [xz < yz]$$

$$(2)$$

$$(x < y) \land (z < 0) \Rightarrow [xz > yz] \tag{3}$$

$$\begin{aligned} & (x < y) \land (z < 0) \Rightarrow [xz > yz] \\ & (x < y) \land (y \le z) \Rightarrow [x < z] \\ & (x \le y) \land (y < z) \Rightarrow [x < z] \end{aligned}$$

$$[x \le y) \land (y < z) \Rightarrow [x < z] \tag{5}$$

$$(x \leqslant y) \land (y \leqslant z) \Rightarrow [x \leqslant z] \tag{6}$$

$$|x+y| \leqslant |x| + |y| \tag{7}$$

$$x^2 \ge 0 \tag{8}$$

$(x < y) \land (z > 0) \Rightarrow [xz < yz], (x < y) \land (z < 0) \Rightarrow [xz > yz]$ $\mathbf{2}$

Basically, multiplying (or dividing) by a positive number preserves the inequality. Multiplying (or dividing) by a negative number "flips" the inequality.

For example, for real numbers a and b,

$$a > b \Leftrightarrow -b < -a,$$

since we transform the inequality by multiplying it by -1, which is a negative number (both going left-to-right and right-to-left).

For a positive natural number n,

$$n^2 > 1 \Leftrightarrow n^3 > n,$$

since we transform the inequality by multiplying it by n (going left-right) or dividing it by n (going rightto-left), and n is a positive number by assumption¹

Keep in mind that if z is 0, the inequality is not preserved: 1 < 2, but it is not the case that 0 * 1 = 0 * 2. It is, however, true that $(x < y) \land (z \ge 0) \Rightarrow [xz \le yz]$, with xz = yz happening when z = 0.

¹Strictly speaking the assumption that n is positive (i.e., not zero) is not needed there, since it follows from both $n^2 > 1$ and $n^3 > n$.

$3 \quad (x < y) \land (w \leqslant z) \Rightarrow [x + w < y + z]$

First, it's important to have the intuition for why this is true. Imagine you're starting with

x < y.

Now if we add the smaller value (w) to the left-hand side (LHS), which is smaller to begin with, and the larger (or equal to w) value (z) to the right-hand side (RHS), then the inequality still holds (i.e., [x + w < y + z] is true).

Suppose that we would like to prove that, for any n > 1,

$$6n^3 > 3n + 2.$$

The idea is to use that for any n > 1, $3n^3 > 3n$ and $2n^3 > 2$. First, we prove that for any natural n > 1 and any positive real a, $an^3 > an$:

Assume $n \in \mathbb{N}, a \in \mathbb{R}^{\geq 0}$ Assume n > 1Then $n^2 = n * n > n * 1 = n > 1$ # multiplication by a positive number n, algebra, assumption that n > 1Then $n^2 > 1$ # omit intermediate terms in the line above Also an > a * 1 > 0 # multiply both sides of an inequality by 3 > 0Then $an^3 > an$ # multiply both sides of an inequality by 3n > 0Then $[n > 1] \Rightarrow an^3 > an$ # introduce implication Then $\forall n \in \mathbb{N}, \forall a \in \mathbb{R}^{\geq 0}, [n > 1] \Rightarrow an^3 > an$ # introduce universal twice

Note that in order to obtain this proof, we could start with the the thing we're trying to prove, and "work backwards:" Start at $an^3 > an$, and then divide by an to get $n^2 > 1$. When presenting the proof, we first prove $n^2 > 1$ (which is true since n > 1), and then get to $3n^3 > 3n$, but we know where to start because we started with what we wanted to prove and then worked backwards.

You can similarly prove that $2n^3 > 2$ for n > 1.

Now we can prove that for any n > 1, $6n^3 > 3n + 2$. We start at what we're trying to prove and work backwards to obtain the proof. But be careful: when working backwards, we need to make sure that the derivation will actually be correct when presenting it going "forward."

We start at $6n^3 > 3n + 2$. This is implied by $n^3 + 3n^3 + 2n^3 > 3n + 2$ (we have just re-expressed the LHS.) This is implied by $n^3 + 2n^3 > 2$ since for n > 1 since we proved that $an^3 > an$ for positive a (and we can set a = 3). (Note that it's not true that for n > 1, $n^3 + 3n^3 + 2n^3 > 3n + 2 \Rightarrow n^3 + 2n^3 > 2$, but it is true that for n > 1, $n^3 + 2n^3 > 2 \Rightarrow n^3 + 3n^3 + 2n^3 > 3n + 2$. The direction in which we work is important.) Now $n^3 + 2n^3 > 2$ is implied by $n^3 > 0$ since we can prove (but haven't proven here that $2n^3 > 2$ for n > 1. $n^3 > 0$ is true since n > 0, and so $n * n^2 > 0 * n^2$ since $n^2 > 0$.

We now prove the statement by working backwards.

Assume
$$n \in \mathbb{N}$$

Assume $n > 1$
Then $n > 0 \quad \# n > 1 > 0$
Then $n^2 * n > n^{2}0 \quad \# n^2 > 0$
Then $n^3 > 0 \quad \#$ algebra
Then $n^3 + 3n^3 > 3n \quad \# 3n^3 > 3n$ for $n > 1$ proved above, $n > 1$ by assumption, $(x < y) \land (z > 0) \Rightarrow [xz < yz]$
Then $n^3 + 3n^3 + 2n^2 > 3n + 2 \quad \# 2n^2 > 2$ for $n > 1$ proved by the reader, $n > 1$ by
assumption, $(x < y) \land (z > 0) \Rightarrow [xz < yz]$
Then $6n^3 > 3n + 2 \quad \#$ algebra
Then $[n > 1] \Rightarrow 6n^3 > 3n + 2 \quad \#$ introduce implication
Then $\forall n \in \mathbb{N}$ $[n > 1] \Rightarrow 6n^3 > 2n + 2 \quad \#$ introduce universal

Then $\forall n \in \mathbb{N}, [n > 1] \Rightarrow 6n^3 > 3n + 2 \quad \# \text{ introduce universal}$

$4 \quad x^2 \geqslant 0$

The square of any real number is non-negative. Why is this true? One way to see it is to say that $x^2 = x * x$, so it's either a product of two negative numbers or a product of two non-negative numbers. Either way, it's non-negative.

The property $x^2 \ge 0$ is sometimes useful in itself. Here's another instance where it's useful. To prove that $x^2 - 2x + 2 \ge 0$, we might say $x^2 - 2x + 2 = x^2 - 2x + 1 + 1 = (x - 1)^2 + 1 \ge 0$, where the last step is justified by starting with $1 \ge 0$, and then adding $(x - 1)^2$ to the LHS and 0 to the RHS.