CSC165, Summer 2014 Assignment 4 Weight: 8% Due Jul. 4th, 2:00 p.m.

You are allowed to use (i.e., put in your justifications), without proof, the following facts:

- $\forall x \in \mathbb{R}, x^2 \ge 0$
- For a, b, c real, a > 0, $[b^2 4ac < 0] \Rightarrow [\forall x, ax^2 + bx + c >= 0]$
- f(n) = 1/n is a decreasing function for n > 0. In other words,

$$\forall n_1 \in \mathbb{N}, \forall n_2 \in \mathbb{N}, n_2 > n_1 \Rightarrow 1/n_2 < 1/n_1$$

1. Prove or disprove using a detailed structured proof, justifying every step:

$$\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, [x(x+1) = y(y+1)] \Leftrightarrow [x = y]$$

Solution: The statement is false.

Proof:

Let $x_0 = -1, y_0 = 0$ Then $x_0 \in \mathbb{Z}, y_0 \in \mathbb{Z}$ $\# x_0 + 1 = 0$ Then $x_0(x_0+1) = 0$ Then $y_0(y_0+1) = 0 \quad \# y_0 = 0$ Then $x_0(x_0 + 1) = y_0(y_0 + 1) \#$ both equal 0 Then also $\neg [x_0 = y_0] \quad \# -1 \neq 0$ Then $[x(x+1) = y(y+1)] \land \neg [x = y] \#$ conjunction of two true statements Then $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, [x(x+1) = y(y+1)] \land \neg [x = y] \quad \# x_0, y_0 \text{ are such } x, y$ Then $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \neg([x(x+1) = y(y+1)] \Rightarrow [x = y]) \#$ implication negation Then $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, [\neg([x(x+1) = y(y+1)] \Rightarrow [x=y])] \lor [\neg([x(x+1) = y(y+1)] \Leftarrow [x=y])]$ # True \lor R is True for any R Then $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \neg([x(x+1) = y(y+1)] \Leftrightarrow [x=y]) \#$ equivalence negation Then $\exists x \in \mathbb{Z}, \neg [\forall y \in \mathbb{Z}, [x(x+1) = y(y+1)] \Leftrightarrow [x=y]] \#$ quantifier negation Then $\neg [\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, [x(x+1) = y(y+1)] \Leftrightarrow [x=y]] \#$ quantifier negation

Note: less detailed arguments that still end with the same conclusion may be fine.

2. Prove or disprove using a detailed structured proof, justifying every step:

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [(x^2y < 0) \land (x \neq 0)] \Leftrightarrow [x^{100}y < 0]$$

Solution: The statement is true.

Proof:

Assume $x \in \mathbb{R}, y \in \mathbb{R}$ Then $x^{49} \in \mathbb{R}$ # the reals are closed under multiplication and $x^{49} = x * x * x * ... * x$ Also $x^{49} \neq 0$ # $\forall x \in \mathbb{R}, x = 0 \Leftrightarrow x^n = 0$ Then $(x^{49})^2 > 0$ # $\forall a \in \mathbb{R}, a \neq 0 \Rightarrow a^2 > 0$ Then $x^{98} > 0$ # algebra Assume $(x^2y < 0) \land (x \neq 0)$ Then $x^{98}(x^2y < 0) = \# \forall a \in \mathbb{R}, \forall b \in \mathbb{R}, [a > 0, b < 0] \Rightarrow ab < 0$

Then $x^{100}y < 0$ # algebra/associativity of multiplication

Then $[(x^2y < 0) \land (x \neq 0)] \Rightarrow [x^{100}y < 0] \#$ assuming the antecedent leads to the consequent

Assume $x^{100}y < 0$ Then $x^{98}(x^2y) < 0$ # algebra/associativity of multiplication Also $1/x^{98} > 0$ # $\forall a \in \mathbb{R}, a > 0 \Rightarrow 1/a > 0$ Then $(1/x^{98})x^{98}(x^2y) < (1/x^{98})0$ # multiply both sides by the same value Then $x^2y < 0$ # algebra

Then $[x^{100}y < 0] \Rightarrow [(x^2y < 0) \land (x \neq 0)]$ # assuming the antecedent leads to the consequent Then $[(x^2y < 0) \land (x \neq 0)] \Leftrightarrow [x^{100}y < 0]$ # equivalence

Then
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [(x^2y < 0) \land (x \neq 0)] \Leftrightarrow [x^{100}y < 0] \quad \# \text{ introduce universal}$$

3. As of Jun.17, I predict that Brazil, Germany, Italy, and Argentina will make it to the semi-finals of the FIFA World Cup. Suppose you have a group of 25 footballers from those four countries. Prove that out of those 25, there is a group of at least 6 footballers who come from the same country. It is not necessary to use the detailed structured proof format, but you still must justify every step.

Solution: The statement is true.

Proof:

Let N_c be the number of footballers in the group who come from country $c \in \{Brazil, Italy, Argentina, Germany\}$

Let N be the total number of footballers in the group

Assume there is no group of 6 footballers who come from the same country and N = 25

Then $\forall c \in \text{Brazil}$, Italy, Argentina, Germany, $N_c \leq 5 \#$ By assumption, the natural number N_c is smaller than 6

Then $N = N_{Brazil} + N_{Italy} + N_{Argentina} + N_{Germany} \leq 5+5+5+5=20$ # Only footballers from the 4 countries are in the group + substitution

But it is not the case that $25 \leq 20$ # arithmetic, we assumed that N = 25 Contradiction!

Then there is a group of at least 6 footballers who come from the same country # assuming otherwise leads to a contradiction

()

4. Prove or disprove the following equivalence. If you decide it is true and so need to prove it, do not use a truth table. Justify every step in your derivation using the equivalences in Section 2.17 of the notes.

$$[(\neg Q \land P) \lor \neg Q] \Leftrightarrow [(\neg Q \land \neg R) \lor (\neg Q \land R)]$$

Solution: The statement is true.

Proof:

$$\begin{array}{l} (\neg Q \wedge P) \vee \neg Q \Leftrightarrow (\neg Q \wedge P) \vee (\neg Q \wedge (P \vee \neg P)) & \# \ identity \ laws \\ \Leftrightarrow (\neg Q \wedge P) \vee (\neg Q \wedge P) \vee (\neg Q \wedge \neg P) & \# \ distributive \ laws \\ \Leftrightarrow (\neg Q \wedge P) \vee (\neg Q \wedge \neg P) & \# \ idempotency \ laws \\ \Leftrightarrow (\neg Q \wedge (P \vee \neg P)) & \# \ distributive \ laws \\ \Leftrightarrow \neg Q & \# \ identity \ laws \\ \Leftrightarrow \neg Q \wedge (\neg R \vee R) & \# \ identity \ laws \\ \Leftrightarrow (\neg Q \wedge \neg R) \vee (\neg Q \wedge R) & \# \ distributive \ laws \end{array}$$

5. Let R^+ be the set of positive real numbers. Prove or disprove using a detailed structured proof, justifying every step:

$$\exists \epsilon \in \mathbb{R}^+, \forall B \in \mathbb{N}, \forall n \in \mathbb{N}, [n > B] \Rightarrow \left[\left| \frac{2n^2 + 15n}{n^2} - 2 \right| < \epsilon \right]$$

Solution: The statement is true. Proof:

Let $\epsilon_0 = 16$

Assume $B \in \mathbb{N}, n \in \mathbb{N}$ Assume n > BThen $B \ge 0$ # The smallest natural number is zero Then $n \ge 1$ # $n > B \ge 0$ Then $|\frac{2n^2 + 15n}{n^2} - 2| = |\frac{15}{n}| = \frac{15}{n} \le 15$ # algebra, $\forall n_1 \in \mathbb{N}, \forall n_2 \in \mathbb{N}, n_2 > n_1 \Rightarrow 1/n_2 < 1/n_1$ applied to $n_1 = 1$ Then $|\frac{2n^2 + 15n}{n^2} - 2| < \epsilon_0$ # 16 > 15 Then $[n > B] \Rightarrow |\frac{2n^2 + 15n}{n^2} - 2| < \epsilon_0$ # assuming the antecedent implies the consequent Then $\forall B \in \mathbb{N}, \forall n \in \mathbb{N}, [n > B] \Rightarrow \left[\left| \frac{2n^2 + 15n}{n^2} - 2 \right| < \epsilon \right]$ # introduce universal Then $\exists \epsilon \in R^+, \forall B \in \mathbb{N}, \forall n \in \mathbb{N}, [n > B] \Rightarrow \left[\left| \frac{2n^2 + 15n}{n^2} - 2 \right| < \epsilon \right]$ # $\epsilon_0 = 16$ is such an ϵ 6. Assume that $D \subset \mathbb{N}$ and $D \neq \emptyset$. Prove or disprove using a detailed structured proof, justifying every step:

$$[\forall x \in D, \exists y \in \mathbb{N}, y < x] \Leftrightarrow [0 \notin D]$$

Solution: The statement is true.

Proof: Assume $0 \in D$ Let $x_0 = 0$ Then $x_0 \in D$ Then $\forall y \in \mathbb{N}, y \ge x_0 \quad \# 0$ is the smallest natural number Then $\exists x \in D, \forall y \in \mathbb{N}, y \ge x \quad \# x_0$ is such an x Then $\neg(\forall x \in D, \exists y \in \mathbb{N}, y < x) \quad \#$ quantifier negation Then $0 \in D \Rightarrow \neg(\forall x \in D, \exists y \in \mathbb{N}, y < x \quad \#$ assuming the antecedent leads to the consequent Then $\forall x \in D, \exists y \in \mathbb{N}, y < x \Rightarrow 0 \notin D \quad \#$ contrapositive Assume $0 \notin D$

Assume $x \in D$ Then $x \neq 0 \quad \# 0 \quad \notin nD$ but $x \in D$ Let $y_0 = 0$ Then $y_0 \in \mathbb{N} \quad \#$ definition of naturals Then $\forall x \in D, y_0 < x \quad \#$ the minimum natural number is 0 and $0 \notin D$ so $x \neq 0$ Then $\exists y \in \mathbb{N}, y < x \quad \# y_0$ is such a yThen $\forall x \in D, \exists y \in \mathbb{N}, y < x \quad \#$ introduce universal Then $[0 \notin D] \Rightarrow [\forall x \in D, \exists y \in \mathbb{N}, y < x] \quad \#$ assuming the antecedent implies the consequent

Then $\forall x \in D, \exists y \in \mathbb{N}, y < x \Leftrightarrow 0 \notin D \quad \#$ equivalence

 \bigcirc