
CSC165, Summer 2014

Assignment 3

Solutions

1. (a) (4 pts.) Prove or disprove that, for any universal set U and predicates P and Q,

[∃x ∈ U,P (x) ∧Q(x)]⇒ [∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))]

Solution: The statement is true.

Proof:
Assume ∃x ∈ U,P (x) ∧Q(x)

Let x0 ∈ U be such that P (x0) ∧Q(x0) # naming it x0

Then P (x0) # P (x0) ∧Q(x0)⇒ P (x0) since R ∧ S ⇒ R
Then ∃x ∈ U,P (x) # x0 is such an x
Then Q(x0) # P (x0) ∧Q(x0)⇒ Q(xo) since R ∧ S ⇒ S
Then ∃x ∈ U,Q(x) # x0 is such an x
Then (∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x)) # conjunction of two true statements above

Then [∃x ∈ U,P (x) ∧ Q(x)] ⇒ [(∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))] # introduce implication
�

(b) (4 pts.) Prove or disprove that, for any universal set U and predicates P and Q,

[∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))]⇒ [∃x ∈ U,P (x) ∧Q(x)]

Solution:
The statement is false. We prove its negation

¬[[∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))]⇒ [∃x ∈ U,P (x) ∧Q(x)]].

Proof:
Let U = {1, 10}, P (x) : x < 5, Q(x) : x > 7
Then P (1) # 1 < 5
Then ∃x ∈ U,P (x) # 1 ∈ U is such an x

Then Q(10) # 10 < 7
Then ∃x ∈ U,Q(x) # 10 ∈ U is such an x

Then [∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))] # conjunction of two true statements

Then ¬[P (1) ∧Q(1)] # Q(1) is false
Then ¬[P (10) ∧Q(10)] # P (10) is false
Then ∀x ∈ U,¬[P (x) ∧Q(x)] # we enumerated all the cases for x ∈ U
Then ¬[∃x ∈ U,P (x) ∧Q(x)] # quantifier negation
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Then [[∃x ∈ U,P (x)] ∧ [∃x ∈ U,Q(x)]] ∧ ¬[∃x ∈ U,P (x) ∧Q(x)] # conjunction

Then ¬[[∃x ∈ U,P (x)) ∧ (∃x ∈ U,Q(x))] ⇒ [∃x ∈ U,P (x) ∧ Q(x)]] # implication negation
♥

(c) (4 pts.) Prove or disprove that, for any universal set U and predicate P

[∃x ∈ U,P (x)]⇒ [∀x ∈ U,P (x)]

Solution:
The statement is false. We prove its negation

¬[[∃x ∈ U,P (x)]⇒ [∀x ∈ U,P (x)]].

Proof:
Let U = {1, 10}, P (x) : x < 5
Then P (1) # 1 < 5
Then ∃x ∈ U,P (x) # 1 ∈ U is such an x

Then ¬P (10) # 10 > 7
Then ∃x ∈ U,¬P (x) # 10 ∈ U is such an x
Then ¬[∀x ∈ U,P (x)] # negation of universal

Then [∃x ∈ U,P (x)] ∧ [¬[∀x ∈ U,P (x)]] # conjunction

Then ¬[∃x ∈ U,Q(x)]⇒ [∃x ∈ U,P (x) ∧Q(x)] # implication negation
QED

(d) (4 pts.) Prove or disprove that, for any universal set U and predicate P

[∀x ∈ U,P (x)]⇒ [∃x ∈ U,P (x)]

Solution:
The statement is false. We prove its negation

¬[[∀x ∈ U,P (x)]⇒ [∃x ∈ U,P (x)]].

Proof:
Let U = ∅, P (x) = true
Then ∀x ∈ U,P (x) # elements in the empty set have all properties

Then ¬∃x ∈ U,P (x) # U is empty

Then [∀x ∈ U,P (x)] ∧ [¬∃x ∈ U,P (x)] # conjunction

Then ¬[[∀x ∈ U,P (x)]⇒ [∃x ∈ U,P (x)]] # implication negation
�
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2. For this question, you will prove that the roots of x2 + 6x + 8.5 are irrational. In other words, that

∀x ∈ R, x2 + 6x + 8.5 = 0⇒ x 6∈ Q.

You may use, without proof, the quadratic formula. In other words, you may use the fact that for all
real a, b, and c,

∀x ∈ R, (ax2 + bx + c = 0) ∧ (b2 − 4ac ≥ 0)⇒ (x =
−b−

√
b2 − 4ac

2a
) ∨ (x =

−b +
√
b2 − 4ac

2a
)

Please write complete proofs in each subquestion, without referring back to earlier subquestions.

(a) (4 pts.) Prove that ∀x ∈ R, x ∈ Q⇒ (x + 1) ∈ Q. Hint: go back to the definition of Q, and show
that if x satisfies that definition, then so does (x + 1).
Solution:

Assume x ∈ R
Assume x ∈ Q

Then x = p
q , for p ∈ Z, q ∈ Z∗ # definition of rational numbers

Then x + 1 = p
q + q

q = p+q
q # algebra

p + q ∈ Z # integers are closed under addition

Then ∃p′ ∈ Z,∃q′ ∈ Z, x + 1 = p′

q′ # p + q and q are such p′ and q′

Then x + 1 ∈ Q # definition of Q
Then x ∈ Q⇒ (x + 1) ∈ Q # introduce implication

Then ∀x ∈ R, x ∈ Q⇒ (x + 1) ∈ Q # introduce universal
QED

(b) (4 pts.) Prove that ∀x ∈ R, x 6∈ Q⇒ (x + 1) 6∈ Q. Hint: can you prove the contrapositive of this
statement?
Solution:
We prove the contrapositive first.

Assume x ∈ R
Assume (x + 1) ∈ Q

Then ∃p′ ∈ Z,∃q′ ∈ Z∗, x + 1 = p′

q′ , # definition of Q
Let p and q be such that x + 1 = p

q # instantiation

Then x = p
q −

q
q = p−q

q # algebra
p− q ∈ Z # integers are closed under subtraction

Then ∃p′ ∈ Z,∃q′ ∈ Z, x = p′

q′ # p− q and q are such p′ and q′

Then x ∈ Q # by definition of Q
Then (x + 1) ∈ Q⇒ x ∈ Q # introduce implication

Then ∀x ∈ R, (x + 1) ∈ Q⇒ x ∈ Q # introduce universal
Then ∀x ∈ R, x 6∈ Q⇒ (x + 1) 6∈ Q # contrapositive

♥
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(c) (16 pts.) Prove that ∀x ∈ R, x2 + 6x + 8.5 = 0⇒ x 6∈ Q. Hint: you may want to use results that
are similar to 2a and 2b.
Solution:
We first prove that adding a whole number to an irrational number results in an irrational num-
ber, and that dividing an irrational number by a whole number results in an irrational number.

Adding a whole number to an irrational number results in an irrational number:

Assume x ∈ R
Assume (x + n) ∈ Q, n ∈ Z

Then x + n = p
q , for p ∈ Z, q ∈ Z∗ # definition of Q

Then x = p
q −

nq
q = p−nq

q # algebra
p− nq ∈ Z # integers are closed under subtraction and multiplication

Then ∃p′ ∈ Z,∃q′ ∈ Z, x = p′

q′ # p− nq and q are such p′ and q′

Then x ∈ Q # by definition of Q
Then (x + n) ∈ Q⇒ x ∈ Q # introduce implication

Then ∀x ∈ R,∀n ∈ Z, (x + n) ∈ Q⇒ x ∈ Q # introduce universal
Then ∀x ∈ R, ∀n ∈ Z, x 6∈ Q ⇒ (x + n) 6∈ Q # contrapositive

Multiplying an irrational number by a whole number results in an irrational number:

Assume x ∈ R
Assume (x/n) ∈ Q, n ∈ Z

Then x/n = p
q , for p ∈ Z, q ∈ Z∗ # definition of Q

Then x = np
q # algebra

np ∈ Z # integers are closed under multiplication

Then ∃p′ ∈ Z,∃q′ ∈ Z, x = p′

q′ # np and q are such p′ and q′

Then x ∈ Q # by definition of Q
Then (x/n) ∈ Q⇒ x ∈ Q # introduce implication

Then ∀x ∈ R,∀n ∈ Z, (x/n) ∈ Q⇒ x ∈ Q # introduce universal
Then ∀x ∈ R, ∀n ∈ Z, x 6∈ Q ⇒ (x/n) 6∈ Q # contrapositive

We now prove the main result.

Assume x ∈ R
Assume x2 + 6x + 8.5 = 0

Then 62 − 4(1)(8.5) = 2 ≥ 0 # algebra

Then
(
x = −6−

√
2

2

)
∨
(
x = −6+

√
2

2

)
# using the quadratic formula

Case 1: x = −6−
√
2

2

−
√

2 6∈ Q # Dividing
√

2 6∈ Q by −1 ∈ Z
−6−

√
2 6∈ Q # Adding

√
2 6∈ Q and −6 ∈ Z

Then −6−
√
2

2 6∈ Q # dividing (−6−
√

2) 6∈ Q by 2 ∈ Z
Then x 6∈ Q # substituting x

Case 2: x = −6+
√
2

2

−6 +
√

2 6∈ Q # Adding
√

2 6∈ Q and −6 ∈ Z
Then −6−

√
2

2 6∈ Q # dividing (−6−
√

2) 6∈ Q by 2 ∈ Z
Then x 6∈ Q # substituting x

Then x 6∈ Q # this holds in both of the two cases

Then x2 + 6x + 8.5 = 0⇒ x /∈ Q # introduce implication

Then x ∈ R, x2 + 6x + 8.5 = 0⇒ x /∈ Q # introduce universal
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Here’s an alternative proof (due to E.W., a student in the class):

Assume x ∈ R
Assume x2 + 6x + 8.5 = 0

Then 62 − 4(1)(8.5) = 2 ≥ 0 # algebra

Then
(
x = −6−

√
2

2

)
∨
(
x = −6+

√
2

2

)
# using the quadratic formula

Case 1: x = −6−
√
2

2

Assume x ∈ Q
Then ∃p′ ∈ Z,∃q′ ∈ Z, x = p/q # definition of Q
Let x = p/q, p ∈ Z, q ∈ Z # pick such p and q

Then p/q = −6−
√
2

2 # substitution

Then
√

2 = −6q−2p
q # algebra

Then ∃p′′,∃q′′,
√

2 = p′′/q′′ # −6q − 2p and q are such p′′ and q′′, integers closed
under addition/multiplication
Then

√
2 ∈ Q # definition of Q

Contradiction! #
√

2 6∈ Q
Then x /∈ Q # assuming x ∈ Q leads to a contradiction

Case 2: x = −6+
√
2

2

Assume x ∈ Q
Then ∃p′ ∈ Z,∃q′ ∈ Z, x = p/q # definition of Q
Let x = p/q, p ∈ Z, q ∈ Z # pick such p and q

Then p/q = −6+
√
2

2 # substitution

Then
√

2 = 6q+2p
q # algebra

Then ∃p′′,∃q′′,
√

2 = p′′/q′′ # 6q+2p and q are such p′′ and q′′, integers closed under
addition/multiplication
Then

√
2 ∈ Q # definition of Q

Contradiction! #
√

2 6∈ Q
Then x /∈ Q # assuming x ∈ Q leads to a contradiction

Then x 6∈ Q # this holds in both of the two cases

Then x2 + 6x + 8.5 = 0⇒ x /∈ Q # introduce implication

Then x ∈ R, x2 + 6x + 8.5 = 0⇒ x /∈ Q # introduce universal
�
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3. An “interpretation” for a logical statement consists of a domain D (any non-empty set of elements)
and a meaning for each predicate symbol. For example, D = {1, 2} and P (x): “x > 0” is an interpre-
tation for the statement ∀x ∈ D,P (x) (in this case, one that happens to make the statement true).
For each statement below, provide one interpretation under which the statement is true and another
interpretation under which the statement is false — if either case is not possible, explain why clearly
and concisely. You may reuse examples if you wish.

(a) (4 pts.) ∃x ∈ D,∀y ∈ D,P (x, y)⇒ P (y, x)
Solution:
To make the statement true, let D = {1} and define P (x, y) : x = y. Then, P (x, y) is true for any
choice of x, y ∈ D.

To make the statement false, we have to find an interpretation for which ∀x ∈ D,∃y ∈ D,P (x, y)∧
¬P (y, x). Let D = N and P (x, y) : x < y. Then, this statement amounts to saying “for every
natural number x, you can always find another natural number that is larger than x,” which is
false.

(b) (4 pts.) [∀x ∈ D,∀y ∈ D,P (x, y)⇒ P (y, x)] ∧ [∀x ∈ D,∀y ∈ D,¬P (x, y)]
Solution:
Let D = {1} and let P (x, y) : x 6= y. Then, this interpretation makes the statement true. The
first part of the conjunction is vacuously true and clearly, ¬P (1, 1).

To make the statement false, let D = {1, 2} and P (x, y) : x < y. Then, P (1, 2) is true, but P (2, 1)
is false. This makes the first part of the conjunction false, which makes the entire conjunction
false.

(c) (4 pts.) [∃x ∈ D,Q(x)]⇒ [∀x ∈ D,P (x)]
Solution:
For an interpretation that makes the statement true, let D = {1}, Q(x) : x = x and P (x) : x = 1.
To make the statement false, we need to find an interpretation for which [∃x ∈ D,Q(x)] ∧ [∃x ∈
D,¬P (x)] is true. Let D = {1}, Q(x) : x = 1, and P (x) : x = 2.

4. For each equivalence below, either provide a derivation from one side of the equivalence to the other
(justify each step of your derivation with a brief explanation — for example, by naming one of the
equivalences (See Tutorial 4), or show that the equivalence does not hold (warning: you cannot use a
derivation to show non-equivalence — instead, think carefully about what an equivalence means, and
how you can disprove it).

(a) (4 pts.) ¬Q ∨ (P ∧ ¬Q)⇔ (¬P ∨Q) ∧ ¬Q
Solution:
The equivalence does not hold. To see this, consider when Q = F and P = T . On the LHS, we
get T , but on the RHS, we get F .

(b) (4 pts.) ((P ∨Q)⇒ R)⇔ (P ⇒ (Q ∨R))
Solution:
The equivalence does not hold. To see this, consider when P = F , Q = T , and R = F . Then, the
LHS is F , but the RHS is T .

6



5. (4 pts.) Use a truth table to prove that (P ⇔ Q)⇔ ((P ∧Q) ∨ (¬P ∧ ¬Q)).
Solution:

The truth table is as follows (omitting ¬P and ¬Q):

P Q P ⇔ Q P ∧Q ¬P ∧ ¬Q ((P ∧Q) ∨ (¬P ∧ ¬Q)) (P ⇔ Q)⇔ ((P ∧Q) ∨ (¬P ∧ ¬Q))
F F T F T T T
F T F F F F T
T F F F F F T
T T T T F T T

There are two boolean variables in the equivalence, and hence there must be 2 ∗ 2 = 4 different rows
(since each of P and Q holds two possible values. The equivalence is true in all cases.

�
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