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Abstract

Advances in deep generative modelling have not translated well to tabular data. We
argue that this is caused by a mismatch in structure between popular generative
models, and discriminative models of tabular data. We thus devise a technique to
turn TabPFN – a highly performant transformer initially designed for in-context
discriminative tabular tasks – into an energy-based generative model, which we
dub TabPFGen. This novel framework leverages the pre-trained TabPFN as part of
the energy function and does not require any additional training or hyperparameter
tuning, thus inheriting TabPFN’s in-context learning capability. We can sample
from TabPFGen analogously to other energy-based models. We demonstrate strong
results on standard generative modelling tasks, including data augmentation, class-
balancing, and imputation, unlocking a new frontier of tabular data generation.

1 Introduction

Tabular data is pervasive and important across various domains [3, 35, 10, 33, 36], yet the application
of deep generative modelling – successful in modalities like images [6, 37, 30] and text [11, 24] –
has lagged behind in the tabular setting [25]. Previous works [34, 17, 28] have argued that attempts
in this direction have not used high performing discriminative models of tabular data effectively.
These discriminative models can assume various forms, encompassing tree-based and deep learning
models. The non-differentiability of tree-based models makes it challenging to integrate them into
gradient-based methods. Conversely, conventional deep learning-based models demand substantial
time and effort in terms of training and hyperparameter tuning, rendering them hard to use across
diverse datasets [31]. An exception to this trend is TabPFN [19], a transformer-based model designed
for tabular data, which has demonstrated remarkable in-context learning capability for discriminative
tasks. It is thus worth considering if TabPFN can be leveraged for generative tasks.

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that
harnesses the power of TabPFN for tabular tasks in generative modelling. TabPFGen defines a
class-conditional energy within the pre-trained TabPFN, and employs the workhorse stochastic
gradient Langevin dynamics algorithm [38] for sample generation. Notably, TabPFGen inherits
TabPFN’s in-context learning capabilities, requiring no additional training or hyperparameter tuning.
We conduct experiments on 18 well-established datasets from OpenML-CC18 [4]. Our results show
a substantial improvement in downstream model performance through the utilization of TabPFGen
for data augmentation, surpassing competitive baselines. Moreover, TabPFGen also proves valuable
for class balancing and imputation by producing samples that closely align with the training data
distribution, showcasing its exciting potential for tabular data generation in practice.

2 Background & Related Work

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-
context learning of discriminative tabular data tasks. It is trained using a prior-fitting procedure [27]
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that exposes the network to a massive number of possible inductive biases which may be observed in
the tabular setting. After training, the learned TabPFN model accepts training samples (xtrain, ytrain)
and test features xtest, and yields predictions ŷtest for the entire test set in a single forward pass. In
our work, we probabilistically invert these inductive biases in order to generate synthetic data xsynth
conditioned on synthetic labels ysynth.

The field of generative modeling for tabular data has witnessed significant advancements. Initially,
GAN-based approaches [20, 40, 14, 28] dominated, followed by diffusion models [42, 21] and large
language models (LLMs) [5, 32]. However, surprisingly, the simplest interpolation methods such as
SMOTE [8, 26] remain competitive [7]. We conjecture that the aforementioned generative techniques
may not have adequately captured the inductive biases of successful discriminative approaches,
undermining their effectiveness. Meanwhile, generative modelling using discriminators has
expanded mainly outside of the tabular domain. Early work by Tu [34] showed promising results on
computer vision tasks, and recent investigations have further demonstrated efficacy in image synthesis
[1, 22]. Nock and Guillame-Bert [28] also shed light on this strategy for tabular data synthesis using
decision trees.

Energy-based models (EBMs) have also gained significant traction across machine learning domains.
For example, Florence et al. [15] utilized EBMs in the context of robot behavioral cloning, while
Liu et al. [23] applied an energy score for out-of-distribution detection. It is worth noting that
energy scores inherently lack class information; our contribution builds upon the existing work by
introducing a class-conditional energy for sample generation. Grathwohl et al. [17] highlighted that
any classifier can be treated as an EBM, a concept that has been applied to various image generation
works [39, 16, 12, 41]. Notably, our work stands out by generating tabular data while leveraging a
pre-trained model without any additional training or hyperparameter tuning.

3 Method

❄

TabPFGen – Tabular Data Generation with TabPFN

Anonymous Author(s)
Affiliation
Address
email

Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation and class-balancing, unlocking a new frontier of tabular data11

generation.12

1 Introduction13

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application14

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has15

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in16

this direction have not used the high performing discriminative models of tabular data effectively.17

These discriminative models are typically tree-based – thus not differentiable – which makes it18

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a19

transformer-based model for tabular data, which has demonstrated powerful in-context learning20

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be21

leveraged for generative tasks.22

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that23

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and24

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within25

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for26

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring27

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established28

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance29

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive30

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing31

samples that closely align with the training data distribution, showcasing its exciting potential tabular32

data generation in practice.33

2 Background & Related Work34

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-35

context learning of discriminative tabular data tasks [19]. It is trained using a prior-fitting procedure36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62
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Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).

We want to leverage the strong discriminative performance of TabPFN on tabular data to then devise a64

class-conditional generative model. In particular, given a synthetic label ysynth 2 {1, . . . , K}, we seek65

to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66

maintaining a link to the classification task solved by TabPFN. To this end, we first note that TabPFN67

– like many classification models – induces a conditional distribution p(y | x) := exp(f(x)[y])P
y0 exp(f(x)[y0]) ⌘68

�(f(x))[y], where x is the network input, f : RD ! RK represents the TabPFN, � : RK ! RK is69

the softmax, and [y] denotes an indexing operation.70

Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73

– which we refer to as the generative energy – so that p(x) / exp(�E(x)).74

Now, writing p(y | x) = exp
�
f(x)[y] � LogSumExpy0(f(x)[y0])

�
, it is clear that75

p(x | y) / p(y | x) · p(x) / exp(f(x)[y]), (1)

and as such we define the class-conditional energy as simply:76

E(x | y) := �f(x)[y] (2)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on77

TabPFN in a principled manner. We refer to this generative model as TabPFGencore.78

To sample from this model we use an approach similar to stochastic gradient Langevin dynamics79

(SGLD) [41] with the class-conditional energy. Whereas SGLD may be seen as using stochastic80

gradient descent – plus noise – to minimize the energy function, our approach instead uses Adam81

[21] plus noise, as we found this to converge more quickly in practice. While this is somewhat of an82

ad-hoc procedure, we note that (i) sample buffers are another ad-hoc sampling procedure which is83

common in previous work on EBMs [12, 35], and (ii) using a noisy version of Adam has also shown84

empirical success in other papers (e.g. [25]). There is a deep relationship between sampling and85

optimization [9] which may be able to fully explain the success of our technique, but we leave this to86

future work. Ablation studies in Appendix B.2 are included to show the effect of Adam and vanilla87

SGLD.88

To further enhance the core methodology, an alternative configuration can be explored by first switch-89

ing (xsynth, ysynth) and (xtrain, ytrain), then subsequently incorporating the resulting class-conditional90

energy into TabPFGencore. We posit this modification introduces a regularization effect to the91

core sampling process; however, the formal proof of this conjecture remains a subject of future92

investigation. Empirically, we have observed that this extended approach exhibits slightly superior93

performance and greater stability in comparison to TabPFGencore. We hereby denote this augmented94

approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98

We conduct a comprehensive set of experiments utilizing 18 diverse datasets sourced from the99

OpenML-CC18 suite [3], as detailed in Appendix A.1. Our investigation focuses primarily on using100

synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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Figure 1: TabPFGen overview. We backpropagate from the class-conditional energy to xsynth for
gradient generation. CE denotes cross entropy; blue and red arrows represent attention.

We leverage the strong in-context discriminative performance of TabPFN to devise a class-conditional
generative model. In particular, given a synthetic label ysynth ∈ {1, . . . ,K}, we seek to define a
generative model p(xsynth | ysynth) which can synthesize new samples xsynth ∈ RD while maintaining
a link to the classification task solved by TabPFN.

TabPFN, like many classification models, induces a conditional distribution p(y | x) given by
σ(f(x))[y], where x is the network input, y is the label for x, f : RD → RK represents the TabPFN,
σ is the softmax function, and [y] denotes an indexing operation. The training data (xtrain, ytrain) is
also passed to TabPFN, but we omit it in the notation for simplicity.

Next, recalling Bayes’ rule, we have p(x | y) ∝ p(y | x) · p(x). To specify p(x) we take inspiration
from Grathwohl et al. [17] and employ an energy function E(x) – termed the class-agnostic energy –
so that p(x) ∝ exp(−E(x)):

E(x) = −LogSumExpy′(f(x)[y′]) (1)

The class-agnostic energy also closely resembles the energy score introduced in Liu et al. [23].
However, since we are interested in class-conditional generation, we also require class-specific
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information. To do this, first rewrite p(y | x) as

p(y | x) = exp (f(x)[y])∑
y′ exp (f(x)[y′])

= exp
(
f(x)[y]− LogSumExpy′(f(x)[y′])

)
, (2)

and thus p(x | y) ∝ p(y | x) · p(x) ∝ exp(f(x)[y]), as the LogSumExp terms cancel out. As a
result, the class-conditional energy can be defined as simply:

E(x | y) := −f(x)[y] (3)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on
TabPFN in a principled manner. As depicted in Figure 1, we first obtain f(xsynth) using (xtrain, ytrain)
as training data. Then, we can directly compute (3) using E(xsynth | ysynth) = −f(xsynth)[ysynth],
eliminating the need to calculate the class-agnostic energy and cross entropy separately.

Algorithm 1: TabPFGencore: Given TabPFN model f , SGLD step size α, SGLD noise σ, SGLD
steps η, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ▷ SGLD Initialization; detailed in Appendix C.2

3: for t ∈[1, 2, ..., η] do
4: E(xt

synth | ysynth) = −f(xt
synth | (xtrain, ytrain))[ysynth] ▷ Class-conditional Energy

5: xt+1
synth = xt

synth − α · ∂E(xt
synth|ysynth)

∂xt
synth

+ σ · N (0, I) ▷ SGLD

6: end for
7: Output: xη

synth

In order to sample from this energy-based model, we employ the stochastic gradient Langevin dynam-
ics (SGLD) method [38]. We are able to generate a batch of xsynth every η steps, taking advantage of
their independence. The choice of η is determined based on the classification performance on xtrain
using a frozen TabPFN. This method is referred to as TabPFGencore and is detailed in Algorithm 1.

To further enhance the core methodology, we propose an alternative configuration by switching
(xsynth, ysynth) and (xtrain, ytrain) in e.g. Figure 1, and integrating the resulting class-conditional energy
E(xtrain | ytrain) – which implicitly depends on (xsynth, ysynth) – into E(xsynth | ysynth). We posit this
modification introduces a regularization effect, although we leave the proof of this to future work.
Empirically, this extended approach exhibits slightly superior performance and greater stability. An
ablation analysis can be found in Appendix D.2. The configuration details are detailed in Appendix
C.2. We henceforth denote the full approach as TabPFGen.

4 Experiments & Analysis

We conduct a comprehensive set of experiments utilizing the 18 numerical datasets without missing
values, which are previouly employed by Hollmann et al. [19]. These datasets are obtained from the
OpenML-CC18 suite [4] and their specifics are outlined in Appendix B.

Experimental Setup: We partition each dataset into equal-sized training and test sets, and then train
or utilize generative models to synthesize samples given the training data. To evaluate the efficacy
of a generative model we use its synthetic samples to either replace, augment, or class-balance the
training data, then train a variety of discriminative models to predict the class label and evaluate the
AUC (Area Under the ROC Curve) performance on the test set. We present the mean and standard
deviation of the above evaluation process over three runs with unique seeds.

Downstream Models: For all experiments we train and evaluate 4 distinct downstream models:
XGBoost [9], random forest [18], logistic regression, and TabPFN [19]. To ensure fair comparisons
we adopt the optimized hyperparameters of downstream models previously published by Hollmann
et al. [19], if available. Experiments with a range of alternative hyperparameter configurations
consistently demonstrate that TabPFGen outperforms baseline methods, as detailed in Appendix D.5.

Baseline Models: We employ a diverse set of baseline generative models, including the traditional
interpolation approach SMOTE [8], generative adversarial networks represented by CTGAN [40],
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variational autoencoder-based methods including TVAE [40] and RTVAE [2], the normalizing flow-
based Neural Spline Flows (NF) [13], and the recent diffusion-based methods TabDDPM [21]. All
baseline generative models are trained and evaluated using the publicly available synthcity package
[29]. The details and hyperparameters of each generative model can be found in Appendix C.1.

4.1 Results

Replacement & Augmentation: We assess the quality of synthetic samples from a given model
through two tasks: augmentation, which augments the training dataset with an equal volume and
class-ratio of synthetic data, and replacement, which replaces the original training set with synthetic
data. The replacement task assesses whether the generated samples closely resemble the training
data, while the augmentation task assesses whether adding synthetic samples improves classification
performance. Table 1 displays the downstream model performance on the test sets when utilizing
synthetic samples from various generative models during training. We find that TabPFGen facilitates a
significant performance enhancement over other generative models – TabPFGen is the only generative
model that consistently improves downstream performance when augmenting the original training
set. For instance, with XGBoost, the average AUC (0.936) achieved is better than a model trained on
the original data (0.924). Individual results on each of the 18 datasets can be found in Appendix D.4.
TabPFGen also outperforms all other generative methods on the replacement task, indicating that its
generated samples most closely resemble the training data. We highlight that TabPFGen requires no
training or fine-tuning, and no hyperparameter tuning to adapt to specific datasets.

Table 1: Average AUC over OpenML-CC18 test sets, with error bars over 3 runs. Top 4 rows:
synthetic data as augmentation. Bottom 4 rows: synthetic data as replacement.

Model Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

XGB 0.924±3e−4 0.926±3e−4 0.912±2e−4 0.914±7e−4 0.912±4e−4 0.917±3e−4 0.927±3e−4 0.934±3e−4

RF 0.906±3e−4 0.906±2e−3 0.898±1e−3 0.904±1e−3 0.894±3e−4 0.907±2e−3 0.911±7e−4 0.912±4e−4

LR 0.920±7e−4 0.914±3e−3 0.904±3e−3 0.909±6e−3 0.901±9e−4 0.906±8e−3 0.885±3e−4 0.921±2e−4

TabPFN 0.934±2e−3 0.927±1e−3 0.930±1e−3 0.931±1e−3 0.928±3e−4 0.932±1e−3 0.929±5e−4 0.935±3e−4

XGB N/A 0.907±4e−4 0.842±8e−4 0.858±2e−3 0.700±6e−4 0.795±9e−4 0.812±3e−4 0.927±3e−4

RF N/A 0.894±1e−3 0.837±6e−4 0.844±5e−4 0.676±2e−3 0.774±3e−4 0.814±9e−4 0.906±6e−4

LR N/A 0.893±2e−3 0.843±6e−4 0.873±1e−3 0.722±3e−3 0.854±7e−4 0.876±3e−4 0.920±1e−3

TabPFN N/A 0.920±8e−4 0.888±4e−4 0.887±3e−4 0.705±2e−3 0.862±1e−3 0.894±7e−4 0.934±2e−4

Table 2: Average AUC using synthetic data for class balancing. Error bars can be found in the
Appendix. These datasets are the five most class-imbalanced datasets in the OpenML-CC18 suite.

Dataset Original Sampling SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

KC 0.823 0.875 0.872 0.859 0.848 0.862 0.866 0.805 0.877
PC 0.824 0.811 0.836 0.827 0.835 0.825 0.841 0.825 0.841
BL 0.731 0.757 0.756 0.743 0.714 0.755 0.706 0.774 0.767
CL 0.925 0.935 0.949 0.793 0.771 0.795 0.909 0.915 0.955
DI 0.837 0.832 0.832 0.831 0.813 0.832 0.837 0.843 0.844

(a) Original (b) CTGAN (c) NF (d) TabDDPM (e) TabPFGen

Figure 2: Contour and marginal density plots of: (a) original two-moons dataset; (b)-(d) synthetic
data generated using baseline methods; (e) synthetic data generated by TabPFGen

Class Balancing: We create class-balanced datasets by generating synthetic data for minority classes
until every class has an equal number of samples. We then train an XGBoost model on the class-
balanced data, and report its test AUC in Table 2. We find that TabPFGen generally outperforms
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alternative methods, including even class-balancing the original data by sampling with replacement,
which we denote “sampling”. Additional details and an expanded table can be found in Appendix D.3.

Imputation: Promising results on imputation using TabPFGen are shown in Appendix D.1.

Qualitative Assessment: The above analyses demonstrate that TabPFN’s generated samples have a
high degree of utility for downstream applications. As a further confirmation of sample quality we
display contour and the marginal plots for generative models on the popular two-moons dataset in
Figure 2. We show that the synthetic data distribution generated by TabPFGen is more similar to the
original data distribution than other baseline methods. Surprisingly, we find that some generative
models perform poorly even on such a simple dataset.

5 Conclusion

In this work, we present TabPFGen, an efficient approach harnessing a pre-trained TabPFN as an
energy based model for tabular data generation without additional training. TabPFGen outperforms
competitive baselines across augmentation, class balancing, and imputation tasks. Nonetheless, it is
essential to recognize that TabPFN’s current limitations, such as input size constraints and a focus on
numerical datasets, limits our method’s current applicability for large-scale datasets. We continue this
discussion in Appendix A, but anticipate that these limitations will gradually recede as transformers
and extensions of TabPFN advance, and argue that re-purposing powerful pretrained discriminative
models for tabular generation is an impactful and promising avenue for future research.
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A Limitations and Impact

Our method builds upon TabPFN, and consequently inherits certain limitations. Presently, TabPFN
imposes restrictions on input size, allowing for a maximum of 2000 tokens, 100 features, and 10
classes. These constraints arise from the quadratic complexity inherent in the underlying transformer
architecture. It is important to note that TabPFN and TabPFGen algorithms are designed to be
architecture-agnostic, therefore the improvement of transformer architectures will directly translate
to our method. As the research of transformer architectures continues to advance, we anticipate these
constraints will diminish.

B Datasets Details

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [4] (available
at http://openml.org). Similar to Hollmann et al. [19], we use datasets with maximum 2000
samples, 100 numerical features, and 10 classes, without missing values. The details of the datasets
are listed in Table 3.

Table 3: 18 datasets from OpenML-CC18

Name #Feat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 625 3 49 11
mfeat-fourier 77 2000 10 200 14
mfeat-karhunen 65 2000 10 200 16
mfeat-morphological 7 2000 10 200 18
mfeat-zernike 48 2000 10 200 22
diabetes 9 768 2 268 37
vehicle 19 846 4 199 54
analcatdata_auth... 71 841 4 55 458
pc4 38 1458 2 178 1049
pc3 38 1563 2 160 1050
kc2 22 522 2 107 1063
pc1 22 1109 2 77 1068
banknote-authenti... 5 1372 2 610 1462
blood-transfusion-... 5 748 2 178 1464
qsar-biodeg 42 1055 2 356 1494
wdbc 31 569 2 212 1510
steel-plates-fault 28 1941 7 55 40982
climate-model-simu... 21 540 2 46 40994

C Experimental Details

C.1 Baseline Details

We use the synthcity package [29] to run all of our baselines. The synthcity code repository can
be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-
rameters as Manousakas and Aydöre [25] when possible. The exact hyperparameters and training
details can be found in Table 13.

C.2 TabPFGen Details

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights are
available for download from the following link: https://github.com/automl/TabPFN/raw/
main/tabpfn/models_diff/prior_diff_real_checkpoint_n_0_epoch_42.cpkt.

We first initialize xsynth using the training data xtrain injected with Gaussian noise. We fix the mean
of the noise to be 0 and standard deviation to be 0.01 throughout all of our experiments. We then
perform SGLD for η steps guided by the classification AUC on xtrain with xsynth as in-context training
data. Since TabPFN accepts independent inputs, we are able to generate a batch of independent
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samples for each iteration in the SGLD process. Therefore, we return the best batch of xsynth at the
end of the SGLD process.

D Additional Results

D.1 Imputation with TabPFGen
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Figure 3: Imputation results. TabPFGen consistently has lower RMSE than the baseline method and
also has decreasing RMSE with a decreasing fraction of missing data.

We conduct imputation analysis on 4 randomly selected datasets including: balance scale, mfeat
morphological, vehicle, and banknote authentication. Details of the datasets can be found in Appendix
B. For all datasets, we uniform randomly mask out a certain percentage of the entries in the table as
NaNs. For the baseline method, we simply use the mean of the entire column as the predicted value.

For our method, we initialize the missing entries as the mean value of the feature. Then we start
sampling with TabPFGen on xsynth, but we fix the values of the non-missing features. Finally, we
measure the RMSE between the original values and the sampled values for all missing entries. As
shown in Figure 3, for all datasets, TabPFGen results in lower RMSE than using the mean feature
value as imputation. We can also observe that TabPFGen is able to reduce RMSE further as the
percentage of data missing decreases, while the mean imputation method does not improve. Even
though these experiments do not compare to a robust set of baselines, they nevertheless demonstrate
that using TabPFGen for imputation is a fruitful direction for further study.

D.2 Ablation Studies

Table 4: Average AUC over OpenML-CC18 with error bars over 3 runs. Results shown across
different TabPFGen variants. Top 4 rows: synthetic data as augmentation. Bottom 4 rows: synthetic
data as replacement.

Model TabPFGencore TabPFGen

XGB 0.934±5e−4 0.934±3e−4

RF 0.913±9e−4 0.912±4e−4

LR 0.919±6e−4 0.921±2e−4

TabPFN 0.937±3e−4 0.935±3e−4

XGB 0.927±1e−3 0.927±3e−4

RF 0.906±7e−4 0.906±6e−4

LR 0.918±6e−4 0.920±1e−3

TabPFN 0.934±1e−3 0.934±2e−4

We conduct ablation studies over the 2 TabPFGen variants in Table 4, recalling that the Core variant is
the basic technique outlined in Algorithm 1, and the full TabPFGen variant also includes the swapping
of (xsynth, ysynth) and (xtrain, ytrain) as described previous. The top 4 rows indicate the performance
of different TabPFGen variants when augmenting the training set with synthetic samples, and the
bottom 4 rows show the downstream model performance when trained only on synthetic data. We see
that the Core variant is generally competitive with the full TabPFGen – even outperforming in some
instances – but we decided to use the full TabPFGen as the main approach because of its performance
on the replacement task.
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Table 5: Average AUC using synthetic data for class balancing. Error bars shown over 3 runs.

Original Sampling SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

KC 0.823±1e−3 0.875±4e−4 0.872±2e−4 0.859±7e−4 0.848±6e−4 0.862±9e−4 0.866±2e−3 0.805±8e−4 0.877±6e−4

PC 0.824±4e−3 0.811±4e−3 0.836±4e−4 0.827±4e−4 0.835±5e−3 0.825±1e−3 0.841±5e−4 0.825±5e−3 0.841±8e−4

BL 0.731±4e−4 0.757±4e−3 0.756±3e−3 0.743±7e−4 0.714±4e−4 0.755±5e−4 0.706±4e−3 0.774±4e−4 0.767±4e−4

CL 0.925±5e−4 0.935±3e−3 0.949±1e−3 0.793±4e−4 0.771±4e−4 0.795±4e−4 0.909±4e−4 0.915±5e−4 0.955±3e−3

DI 0.837±4e−3 0.832±4e−4 0.832±7e−4 0.831±5e−4 0.813±5e−4 0.832±3e−3 0.837±5e−4 0.843±4e−4 0.844±4e−3

Table 6: Information of datasets used for class-balancing experiments

Dataset Full Name MinMaj

KC kc2 0.26
PC pc3 0.11
BL blood-transfusion-service-center 0.31
CL climate-model-simulation-crashes 0.09
DI diabetes 0.54

D.3 Additional Class Balancing Experiment Details

Table 5 shows class balancing results with multiple runs for each experimental setup. The datasets KC,
PC, BL, CL, and DI represent kc2, pc3, blood-transfusion-service-center, climate-model-simulation-
crashes, and diabetes datasets, respectively. All of them are chosen from the OpenML-CC18 suite.
We find that TabPFGen generally outperforms baseline methods, with only TabDDPM on blood-
transfusion outperforming TabPFGen throughout the entire suite of experiments.

Table 6 shows the full name for each dataset along with the ratio of minority class size to majority
class size (MinMaj).

D.4 Synthetic Data as Augmentation Details

Table 7: Detailed “synthetic data as augmentation” experiment using XGBoost

Dataset Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

balance-scale 0.9939 0.9931 0.8374 0.8236 0.8135 0.8236 0.9620 0.9931
mfeat-fourier 0.9803 0.9801 0.9761 0.9773 0.9754 0.9770 0.9768 0.9803
mfeat-karhunen 0.9983 0.9989 0.9977 0.9974 0.9961 0.9977 0.9977 0.9985
mfeat-morphological 0.9612 0.9608 0.9574 0.9556 0.9562 0.9600 0.9612 0.9613
mfeat-zernike 0.9735 0.9749 0.9729 0.9731 0.9725 0.9733 0.9721 0.9740
diabetes 0.8378 0.8109 0.8390 0.8273 0.8384 0.8401 0.8295 0.8378
vehicle 0.9282 0.9282 0.9219 0.9248 0.9147 0.9074 0.9234 0.9272
analcatdata_authorship 0.9997 1.0000 0.9999 0.9999 0.9997 0.9998 0.9999 0.9999
pc4 0.9291 0.9291 0.9245 0.9259 0.9209 0.9230 0.9279 0.9351
pc3 0.8288 0.8261 0.8187 0.8251 0.8304 0.8323 0.8279 0.8392
kc2 0.8227 0.8567 0.8760 0.8762 0.8793 0.8831 0.8801 0.8716
pc1 0.8489 0.8683 0.8428 0.8465 0.8602 0.8556 0.8800 0.8971
banknote-authentication 1.0000 0.9999 0.9990 0.9974 0.9990 0.9997 1.0000 1.0000
blood-transfusion-service-center 0.7312 0.7495 0.7221 0.7662 0.7626 0.7580 0.7651 0.7579
qsar-biodeg 0.9191 0.9151 0.9120 0.9091 0.9078 0.9113 0.9181 0.9212
wdbc 0.9904 0.9800 0.9512 0.9491 0.9687 0.9674 0.9798 0.9855
steel-plates-fault 0.9656 0.9653 0.9597 0.9668 0.9627 0.9604 0.9585 0.9654
climate-model-simulation-crashes 0.9255 0.9447 0.9081 0.9106 0.8586 0.9389 0.9347 0.9586
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Table 8: Detailed “synthetic data as augmentation experiment” using Random Forest.

Dataset Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

balance-scale 0.8001 0.8142 0.7491 0.7717 0.7125 0.7717 0.7990 0.8294
mfeat-fourier 0.9794 0.9806 0.9766 0.9774 0.9775 0.9765 0.9793 0.9785
mfeat-karhunen 0.9968 0.9974 0.9955 0.9970 0.9946 0.9963 0.9971 0.9973
mfeat-morphological 0.9509 0.9482 0.9471 0.9459 0.9449 0.9510 0.9529 0.9502
mfeat-zernike 0.9714 0.9672 0.9662 0.9664 0.9677 0.9684 0.9694 0.9707
diabetes 0.8159 0.8020 0.8068 0.7813 0.8087 0.8070 0.8209 0.8307
vehicle 0.9188 0.9153 0.9155 0.9183 0.9109 0.9167 0.9237 0.9175
analcatdata_authorship 0.9998 0.9999 0.9998 0.9999 0.9996 0.9999 0.9995 0.9999
pc4 0.9220 0.9225 0.9131 0.9213 0.9145 0.9166 0.9277 0.9261
pc3 0.8047 0.8173 0.8101 0.8090 0.8085 0.8318 0.7906 0.8200
kc2 0.8348 0.8594 0.8259 0.8497 0.8484 0.8230 0.8377 0.8348
pc1 0.8853 0.8851 0.8740 0.9063 0.8902 0.9066 0.8919 0.8867
banknote-authentication 0.9996 0.9998 0.9992 0.9992 1.0000 0.9994 1.0000 0.9998
blood-transfusion-service-center 0.7016 0.6914 0.6868 0.7081 0.6905 0.7136 0.7261 0.6984
qsar-biodeg 0.9158 0.9156 0.9076 0.9106 0.9076 0.9072 0.9198 0.9158
wdbc 0.9838 0.9856 0.9837 0.9897 0.9844 0.9906 0.9860 0.9802
steel-plates-fault 0.9577 0.9601 0.9579 0.9600 0.9579 0.9584 0.9578 0.9574
climate-model-simulation-crashes 0.8758 0.8580 0.8581 0.8614 0.7908 0.8951 0.9301 0.9261

Table 9: Detailed “synthetic data as augmentation experiment” using Logistic Regression.

Dataset Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

balance-scale 0.9574 0.9568 0.8933 0.8778 0.8517 0.8778 0.9556 0.9559
mfeat-fourier 0.9631 0.9612 0.9611 0.9636 0.9605 0.9601 0.9570 0.9584
mfeat-karhunen 0.9933 0.9930 0.9903 0.9895 0.9885 0.9907 0.9863 0.9948
mfeat-morphological 0.9664 0.9654 0.9578 0.9538 0.9534 0.9526 0.9629 0.9660
mfeat-zernike 0.9759 0.9750 0.9754 0.9757 0.9708 0.9744 0.9645 0.9757
diabetes 0.8384 0.8292 0.8330 0.8304 0.8440 0.8255 0.8132 0.8365
vehicle 0.9369 0.9404 0.8914 0.8917 0.8607 0.8803 0.7469 0.9388
analcatdata_authorship 0.9999 0.9999 0.9832 0.9909 0.9976 0.9782 0.9989 0.9999
pc4 0.8880 0.8869 0.8922 0.8743 0.8597 0.8615 0.8500 0.8830
pc3 0.8201 0.8010 0.7649 0.7986 0.8031 0.8129 0.7144 0.8162
kc2 0.8524 0.8084 0.8640 0.8428 0.8781 0.8497 0.8283 0.8727
pc1 0.8233 0.8015 0.7731 0.8393 0.8072 0.8185 0.7827 0.8224
banknote-authentication 0.9999 0.9999 0.9981 0.9983 0.9986 0.9918 0.9999 0.9999
blood-transfusion-service-center 0.7616 0.7610 0.7487 0.7682 0.7669 0.7520 0.7610 0.7639
qsar-biodeg 0.9060 0.9046 0.9037 0.9055 0.8789 0.9024 0.8664 0.9073
wdbc 0.9834 0.9836 0.9832 0.9805 0.9873 0.9896 0.9729 0.9841
steel-plates-fault 0.9375 0.9374 0.9189 0.9295 0.9175 0.9247 0.9500 0.9377
climate-model-simulation-crashes 0.9621 0.9544 0.9453 0.9581 0.9037 0.9687 0.8192 0.9610

Table 10: Detailed “synthetic data as augmentation experiment” using TabPFN.

Dataset Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

balance-scale 0.9984 0.9983 0.9510 0.9582 0.9508 0.9582 0.9792 0.9955
mfeat-fourier 0.9810 0.9804 0.9783 0.9774 0.9764 0.9773 0.9805 0.9802
mfeat-karhunen 0.9980 0.9979 0.9976 0.9978 0.9975 0.9976 0.9986 0.9978
mfeat-morphological 0.9646 0.9637 0.9644 0.9627 0.9638 0.9630 0.9638 0.9638
mfeat-zernike 0.9818 0.9817 0.9806 0.9807 0.9816 0.9810 0.9819 0.9817
diabetes 0.8428 0.7766 0.8423 0.8307 0.8418 0.8308 0.8224 0.8138
vehicle 0.9568 0.9516 0.9419 0.9477 0.9467 0.9450 0.9541 0.9523
analcatdata_authorship 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999
pc4 0.9233 0.9283 0.9320 0.9326 0.9254 0.9306 0.9146 0.9329
pc3 0.8481 0.8183 0.8396 0.8449 0.8369 0.8516 0.8365 0.8533
kc2 0.8777 0.8565 0.8816 0.8701 0.8779 0.8615 0.8831 0.8750
pc1 0.8919 0.8782 0.8709 0.8864 0.8753 0.8888 0.8767 0.8903
banknote-authentication 1.0000 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000
blood-transfusion-service-center 0.7590 0.7277 0.7444 0.7599 0.7601 0.7622 0.7687 0.7423
qsar-biodeg 0.9306 0.9242 0.9291 0.9220 0.9242 0.9214 0.9287 0.9293
wdbc 0.9904 0.9909 0.9897 0.9883 0.9922 0.9896 0.9933 0.9892
steel-plates-fault 0.9634 0.9623 0.9596 0.9613 0.9623 0.9631 0.9627 0.9636
climate-model-simulation-crashes 0.9625 0.9563 0.9354 0.9343 0.8915 0.9546 0.8946 0.9649

In Table 7, 8, 9 and 10, we show the performance of TabPFGen and baseline methods on each of the
18 datasets individually. We display the average values over three runs, but omit error bars to preserve
space. We find that TabPFGen outperforms the baseline methods on the majority of the datasets. Also
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notably, SMOTE performs quite well even when compared against modern deep learning methods,
which is consistent with the recent work from Manousakas and Aydöre [25].

D.5 Experiments with Different Hyperparameters of Downstream Models

Table 11: Synthetic data as augmentation with various downstream model hyperparameters. Bolding
is done here just to highlight the best result up to three significant figures – only one run of each
setting was conducted.

Model Original SMOTE CTGAN TVAE NF RTVAE TabDDPM TabPFGen

XGB 0 0.903 0.897 0.901 0.897 0.891 0.903 0.909 0.914
RF 0 0.902 0.895 0.900 0.895 0.892 0.900 0.903 0.920
LR 0 0.888 0.894 0.884 0.886 0.884 0.888 0.871 0.905

XGB 1 0.906 0.902 0.903 0.904 0.896 0.906 0.911 0.915
RF 1 0.908 0.902 0.897 0.897 0.891 0.904 0.911 0.919
LR 1 0.920 0.913 0.901 0.908 0.905 0.905 0.885 0.920

XGB 2 0.915 0.914 0.906 0.909 0.909 0.911 0.914 0.928
RF 2 0.906 0.905 0.902 0.898 0.897 0.905 0.911 0.922
LR 2 0.868 0.870 0.863 0.865 0.866 0.869 0.852 0.885

XGB 3 0.894 0.897 0.864 0.862 0.853 0.871 0.881 0.912
RF 3 0.909 0.909 0.904 0.903 0.900 0.908 0.914 0.921
LR 3 0.897 0.894 0.866 0.898 0.882 0.893 0.871 0.922

We also experiment with different hyperparameters of the downstream models to verify the robustness
of our approach to the specific choice of downstream model, ensuring that the superior performance
of TabPFGen over other generative models is not sensitive to such choices. Table 11 shows the results
of the “synthetic data as augmentation” experiment with 4 different sets of hyperparameters each
for downstream XGBoost (XGB), random forest (RF), and logistic regression (LR) models. We
have found that TabPFGen has the best result in all of the hyperparameter settings, showing that the
results presented in the main text are robust to such choices. The parameters are randomly chosen
using ParameterSampler from the scikit-learn library to avoid biasing the algorithm. We list the
different hyperparameters we have used in Table 12.
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Table 12: Different downstream model hyperparameters for Table 11.

XGB RF LR

Set 0 alpha: 1.274e-10,
colsample_bylevel: 0.960,
colsample_bytree: 0.785,
gamma: 5.737e-07,
lambda: 3.493e-14,
learning_rate: 1.235e-06,
max_depth: 8,
min_child_weight: 3.737e-11,
n_estimators: 971,
subsample: 0.766

max_depth: 39,
max_features: sqrt,
min_samples_split: 5,
n_estimators: 34

C: 1.362e-03,
fit_intercept: True,
max_iter: 320,
penalty: l2

Set 1 alpha: 2.165e-16,
colsample_bylevel: 0.975,
colsample_bytree: 0.865,
gamma: 2.892e-13,
lambda: 9.203e-14,
learning_rate: 1.922e-06,
max_depth: 6,
min_child_weight: 1.312e-16,
n_estimators: 956,
subsample: 0.432

max_depth: 43,
max_features: sqrt,
min_samples_split: 5,
n_estimators: 40

C: 0.2776,
fit_intercept: True,
max_iter: 152,
penalty: none

Set 2 alpha: 9.415e-07,
colsample_bylevel: 0.311,
colsample_bytree: 0.433,
gamma: 9.377e-11,
lambda: 2.719e-09,
learning_rate: 0.0313,
max_depth: 3,
min_child_weight: 2.436e-10,
n_estimators: 343,
subsample: 0.673

max_depth: 39,
max_features: sqrt,
min_samples_split: 5,
n_estimators: 94

C: 7.744e-05,
fit_intercept: True,
max_iter: 137,
penalty’: l2

Set 3 alpha: 5.717e-16,
colsample_bylevel: 0.686,
colsample_bytree: 0.336,
gamma: 1.149e-15,
lambda: 0.293,
learning_rate: 0.574,
max_depth: 2,
min_child_weight: 2.729e-10,
n_estimators: 445,
subsample: 0.278

max_depth: 11,
max_features: sqrt,
min_samples_split: 5,
n_estimators: 119

C: 0.0266,
fit_intercept: False,
max_iter: 180,
penalty: none
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Table 13: Hyperparameters of baseline models.

Model Hyperparameters

TVAE n_units_embedding=500,
lr=5e-4,
weight_decay=1e-5,
batch_size=1000,
decoder_n_layers_hidden=2,
decoder_n_units_hidden=256,
decoder_nonlin="leaky_relu",
decoder_dropout=0.1,
encoder_n_layers_hidden=3,
encoder_n_units_hidden=256,
encoder_nonlin="leaky_relu",
encoder_dropout=0.1,
loss_factor=1,
data_encoder_max_clusters=10,
clipping_value=1,
sampling_patience=500

RTVAE n_units_embedding=500,
lr=0.001,
weight_decay=1e-5,
batch_size=200,
decoder_n_layers_hidden=3,
decoder_n_units_hidden=500,
decoder_nonlin="leaky_relu",
decoder_dropout=0,
encoder_n_layers_hidden=3,
encoder_n_units_hidden=500,
encoder_nonlin="leaky_relu",
encoder_dropout=0.1,
data_encoder_max_clusters=10,
robust_divergence_beta=2,
clipping_value=1,
sampling_patience=500

CTGAN generator_n_layers_hidden=2,
generator_n_units_hidden=256,
generator_nonlin="relu",
generator_dropout=0.1,
generator_opt_betas=(0.9, 0.999),
discriminator_n_layers_hidden=2,
discriminator_n_units_hidden=256,
discriminator_nonlin="leaky_relu",
discriminator_n_iter=1,
discriminator_dropout=0.1,
discriminator_opt_betas=(0.9, 0.999),
lr=5e-4,
weight_decay=1e-3,
batch_size=1000,
clipping_value=1,
lambda_gradient_penalty=10,
encoder_max_clusters=10,
sampling_patience=500

NF n_layers_hidden=2,
n_units_hidden=256,
batch_size=1000,
num_transform_blocks=1,
dropout=0.1,
batch_norm=False,
num_bins=8,
tail_bound=3,
lr=5e-4,
apply_unconditional_transform=True,
base_distribution="standard_normal",
linear_transform_type="permutation",
base_transform_type="rq-autoregressive",
encoder_max_clusters=10,
n_iter_min=100,
sampling_patience=500

TabDDPM is_classification=True,
lr=0.002,
weight_decay=0.0001,
batch_size=1024,
gaussian_loss_type=’mse’,
scheduler=’cosine’,
model_type=’mlp’,
dim_embed=128,
continuous_encoder=’quantile’,
sampling_patience=500
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