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Summary 
 

We developed an ensemble of three convolutional neural network object detectors (Mask 

RCNN, YOLOv3, and Faster RCNN architectures), in combination with a classification 

network (DenseNet-121 architecture) that served to reduce false positives, to detect 

pneumonia on chest x-rays (see Figure 1). We found that using a relaxed detection 

threshold for object detection, whilst requiring unanimous agreement among the 

detectors, effectively consolidated the need to minimize both false positives and false 

negatives. The classifier’s detection threshold was computed by optimizing the area 

under the curve (AUC). Adaptive histogram equalization was used to improve image 

contrast as a data preprocessing step. We used age, sex, and view position as inputs into 

the penultimate layer of the classifier to improve performance. 

 

 

Figure 1 Our methodological pipeline for object detection. Three object detection algorithms were used to propose 
bounding box predictions, and a classifier served to minimize false positives. 

 

Model Ensemble Approach & Interesting Findings 
 

We ensembled our detection models in two stages. First, we took the intersection of the 

bounding box predictions of ten Mask RCNN (He et al. 2017) detectors, each trained on 
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a subset of the training data. Concretely, we define an intersection as any set of pixels 

that are encompassed by the bounding box predictions of all ten models. Requiring 

agreement between the ten models helped reduce false positives. To reduce false 

negatives, which might occur if any one of the ten models did not output a bounding box, 

a relatively low bounding box confidence threshold was used. 

 

Next, we took the ten bounding boxes which contributed to the resulting regions in the 

intersected image, and calculated a weighted, average bounding box. The weighted 

bounding box position for a given box side is given by: 

𝑦𝑖 = 1𝑍∑𝑤𝑖𝑓𝑖𝑀
𝑖=1  

where 𝑖 indexes each of the 𝑀 = 10 models, 𝑤𝑖 = 1𝑙𝑜𝑠𝑠𝑖 is the inverse of the validation loss 

of model 𝑖 obtained during training, and 𝑓𝑖 is the box position prediction for model 𝑖. Finally, 𝑍 = ∑ 𝑤𝑖𝑀𝑖=1  normalizes the coordinates. 

 

The two approaches above result in two boxes: a small one (corresponding to the 

intersection), and a larger one (corresponding to the average). We hypothesized that the 

optimal bounding box would lie somewhere between the two. Therefore, we re-weighted 

the coordinates of the intersection and average bounding boxes using a 3:1 ratio. Figure 

2 demonstrates this process. 

 

       

Figure 2 Model ensemble approach for Mask RCNN. Left) First, the ten Mask RCNN models output bounding boxes 
(in orange), after which their intersections are taken. This leads to the blue boxes in the Right) image. The average of 
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the connected bounding boxes is also calculated, which is given by the purple boxes. The final predictions, in green, 
are taken by re-weighting the blue and purple boxes. 

 

This exact approach was repeated to consolidate the predictions of the combined ten 

Mask RCNNs, YOLOv3 (Redmon et al. 2015), and Faster RCNN (Ren et al. 2015), except 

without weighing the average bounding boxes using each model’s inverse validation loss. 

We ensembled these models to minimize the possibility that the short-coming of any one 

model would have a significant impact on performance. 

 

The rationale for intersecting different models was, in a crude sense, to emulate the 

approach used by the radiologists who labeled the data, as they took the intersection of 

their bounding box predictions. There is also theoretical justification for shrinking the box 

sizes: all three detection models use loss functions that are less sensitive to errors for 

large bounding box predictions than for smaller ones. Finally, note that the intersection is 

necessarily smaller than any of the contributing boxes. This had a positive effect, since 

we found that the stage 1 test images had much smaller bounding boxes than those of 

the stage 1 training set (likely because the two were labeled differently, see Figure 3). 

 

We experimented with alternative definitions of intersection, for example where only a 

fraction of the detectors need to agree, as a means of reducing false negatives. However, 

our preliminary results showed this did not improve performance, and introduced other 

difficulties, such as having non-rectangular intersections. False negatives did affect 

performance to some extent, as the combined detectors sometimes did not produce a 

bounding box, despite the classifier labeling the image as a positive case. Similarly, for 

some positive cases, the classifier may have incorrectly predicted the image as 

normal/healthy, despite the object detectors outputting a bounding box. Future work 

would involve better consolidating the decision-making of the classifier and the detectors 

using a probabilistic approach, as opposed to using the two as hard decision rules. We 

also found that our bounding box predictions, on average, were well-centered but larger 

than the ground truth bounding boxes for the stage 1 test data. This suggests simply 

increasing the weight of the intersection vs. the weighted average bounding box may have 

further improved results. 
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Figure 3 The statistics of the stage 1 training and test sets differed widely, possibly because of the different labeling 
strategies used. These two plots demonstrate one such difference: the average bounding box sizes are significantly 
larger in the training set than in the test set. This may explain why our ensemble approach, which intersects boxes, 
may have led to large improvements in performance. 

 

Finally, we found the statistics of the training and (stage 1) test sets to differ widely, both 

in the number of pneumonia cases, and in terms of the bounding box sizes (see Figure 

3). Ultimately, we decided to use the models that performed best on the stage 1 public 

leaderboard for our final model submission. Despite the risk of overfitting to the test set, 

we reasoned that due to differences in the labeling scheme of the training and test sets, 

this approach made sense. Note that we did not re-train our models when the stage 1 test 

set labels were released. 

 

Model Execution Time 
 

As is often the case with neural network-based solutions, training time is significantly 

greater than inference time. The whole training pipeline takes several hours on a cluster 

of three GPUs, but inference time per image takes no more than a few seconds. 

 

Other Approaches 
 

We experimented with a plethora of approaches before deciding on our final approach. 

We believe the diversity of approaches we investigated was a strength, and given more 

time to investigate, could have led to significant improvements in results. Below are some 

example approaches we investigated: 

1) Intelligently reduce the confidence threshold for the detection of second and third 

bounding boxes in an image. The reason for this is that if one bounding box is 
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detected when using a high confidence threshold, the network should “search” or 
“pay closer attention” to possible second findings. We found this approach to be 

beneficial, but we did not end up pursuing it when we introduced the ensemble 

approach, as the latter approach allowed us to use a low confidence threshold for 

each detector. The need for collective agreement naturally led to improved 

confidence in the predictions. 

2) Training on full resolution images. We implemented an approach to use the images 

at full resolution (1024 x 1024), as we hypothesized that the rich information 

contained in the full resolution images would be beneficial for accurate 

classification and detection. However, this idea presented its own challenges, 

including overfitting to the high dimensional input data, and fitting the full resolution 

images into GPU memory. In practice, we split the full resolution image into 

quadrants, made predictions on each quadrant separately, and then combined the 

predictions of adjacent quadrants by computing a maximum size rectangle within 

the convex hull of the predictions. 

3) Training Mask RCNN on “negative region proposals”. The open source 
implementation of Mask RCNN we used does not make use of images without 

objects, thereby reducing our effective dataset size by around two thirds. We 

experimented with modifying the training procedure so that, for images with no 

ground truth bounding boxes, we would sample a random number of boxes 

(between one and three), each randomly sized (but in size similar to the 

pneumonia bounding boxes). This resulted in a second object category, one which 

only existed for images with no positive cases. Our initial results showed that this 

approach worked very well, but as we investigated this approach late in the 

competition, there was not enough time to integrate it into the full pipeline and test 

its performance adequately. 

4) We investigated test time augmentation, in particular left-right flips, but our 

preliminary findings suggested this was not beneficial. 

5) We concatenated age, sex, and view position channel-wise in the penultimate 

convolutional layer for the object detectors, then used a 1x1 convolution to resize 

the channels to the expected size. Our preliminary findings suggested this did not 

improve performance, but further investigation may be warranted. 

6) Use the distribution of bounding box centers in the training set to make more 

informed decisions during inference. This approach could be of use because the 

distribution of bounding box centers in the training data may be predictive of the 

distribution in the validation/test sets. We modelled the prior probability of bounding 

box locations on the training set using a gaussian mixture model, with the centers 

of the two Gaussians located in the left and right lungs. For test-time bounding box 

predictions, we computed to which of the two clusters the predicted bounding box 

belonged to, then calculated the probability that the bounding box would occur in 

that position given the distribution of bounding box locations in the training set. 

This probability could then serve as a prior probability (in the Bayesian sense) 

when deciding which bounding boxes to keep (see Figure 4 for a heat map of the 
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prior probabilities). One challenge with this approach is how to meaningfully 

integrate the prior probability in the object detection decision-making process. We 

did not have sufficient time to investigate this approach in full. 

 

 

Figure 4 Heap map of the prior probability of bounding box centers in the stage 1 training set, assuming a mixture of 
two Gaussians is used to model the density. 

 

Data Preprocessing, Model Architecture, and Training 
 

We applied adaptive histogram equalization to improve local image contrast as a pre-

processing step. Figure 5 shows the effect of adaptive histogram equalization on a 

sample image. 
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Figure 5 The effect of adaptive histogram equalization. Left: Original image, Right: Adaptive histogram equalized image. 

 

We used Resnet50, with 384x384 image sizes, and the stochastic gradient descent 

(SGD) with momentum optimization algorithm when training Mask RCNN. The learning 

rate was reduced multiplicatively during validation loss plateaus. We found that larger 

architectures did not improve performance, possibly due to the relatively small dataset 

size. We used Inception Resnet V2 with atrous convolutions, 256x256 image sizes, and 

the SGD with momentum optimization algorithm when training Faster RCNN. We used 

NASNet with 256x256 image sizes and the Adam optimization algorithm when training 

YOLOv3. For the classifier, we used DensetNet-121 (Huang, Liu, and Weinberger 2016), 

with 256x256 image sizes, and the Adam optimization algorithm. Data augmentation 

during training consisted of horizontal flips, affine transformations, and pixel-wise intensity 

multiplications. The classifier was pre-trained on the NIH open source dataset. 
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Open Source Software and External Datasets 
 

Open source software and pretrained weights: 

https://github.com/matterport/Mask_RCNN 

https://github.com/qqwweee/keras-yolo3 

https://github.com/tensorflow/models/tree/master/research/object_detection 

https://github.com/arnoweng/CheXNet 

External Datasets: 

https://www.kaggle.com/nih-chest-xrays/data 

 


