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Abstract

Scene graph generation is an important task in com-
puter vision aimed at improving the semantic understand-
ing of the visual world. In this task, the model needs to de-
tect objects and predict visual relationships between them.
Most of the existing models predict relationships in paral-
lel assuming their independence. While there are differ-
ent ways to capture these dependencies, we explore a con-
ditional approach motivated by the sequence-to-sequence
(Seq2Seq) formalism. Different from the previous research,
our proposed model predicts visual relationships one at
a time in an autoregressive manner by explicitly condi-
tioning on the already predicted relationships. Drawing
from translation models in NLP, we propose an encoder-
decoder model built using Transformers where the en-
coder captures global context and long range interactions.
The decoder then makes sequential predictions by condi-
tioning on the scene graph constructed so far. In addi-
tion, we introduce a novel reinforcement learning-based
training strategy tailored to Seq2Seq scene graph genera-
tion. By using a self-critical policy gradient training ap-
proach with Monte Carlo search we directly optimize for
the (mean) recall metrics and bridge the gap between train-
ing and evaluation. Experimental results on two public
benchmark datasets demonstrate that our Seq2Seq learn-
ing approach achieves strong empirical performance, out-
performing previous state-of-the-art, while remaining effi-
cient in terms of training and inference time. Full code
for this work is available here: https://github.com/
layer6ai-labs/SGG-Seq2Seq .

1. Introduction

Analyzing natural images containing multiple objects
and complex interactions between them is a challenging
task. We consider a common formulation of this task, scene
graph generation (SGG) [51], in which given an image, we
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Figure 1: The top row shows predictions when the model is not
conditioned on any 〈subject, predicate, object〉 triplets, and the
model incorrectly predicts 〈man, on, surfboard〉. In the bottom
row, as neighboring relevant triplets are revealed to the model
(non-shaded regions), the predictions shift to the correct predicate
〈man, holding, surfboard〉.

need to detect and predict objects and relationships between
them in the form of a scene graph [18]. SGG is important
for many applications at the intersection of computer vision
and language, such as VQA [61, 16, 39, 15, 10, 26], image
captioning [56, 14], retrieval [18, 2, 43] and others [1, 53].

Humans successfully understand images by alternating
between two primary steps: sequentially attending to dif-
ferent regions of the image and applying high-level reason-
ing about these regions [47]. The two steps are recurrent
until the image is understood, so the overall process is in-
herently both sequential and conditional. The benefit of
sequential conditioning also translates to machine learning
models for the SGG task as demonstrated by the example
in Figure 1. Given an image of a beach scene, we aim to
predict the correct relationship (predicate) between “man”
and “surfboard”. At the start, when the model is not shown
any other relationships (grayed out portion in the top im-
age) and hence there is no conditioning, the model predicts
“on” with high likelihood, as this is one of the most com-
mon predicates occurring with “man” and “surfboard” in



the dataset. In the next step we reveal neighboring rela-
tionships to the model and condition on them (non-shaded
regions in the bottom image). After seeing relationships
〈man, wear, shoe〉 and 〈man, on, beach〉, the model infers
that since the man is wearing shoes and there is an adja-
cent man on the beach, the more appropriate relationship is
“holding”. Consequently the probabilities of “on” and “rid-
ing” drop. This example illustrates how sequential condi-
tioning can help resolve ambiguities and reduce bias learned
from the training data.

The majority of SGG methods, except for a few notable
exceptions such as Neural Motifs (NM) [60], predict the
final relationship labels in parallel making a severely lim-
iting assumption of independence among the triplets. In
NM, global context from detected objects is encoded via
an LSTM, but the final relationship prediction is still done
independently for each pair of objects and no conditioning
is applied. In contrast, we quantitatively analyze the impor-
tance of incorporating both the sequential and conditional
properties (§ 2). Based on that analysis and inspired by
the Transformer architecture showing strong results both in
neural machine translation [45] and computer vision [11, 4],
we propose a Seq2Seq model that exploits sequential condi-
tioning. We design a conditional Transformer decoder that
sequentially leverages already predicted relationships to ad-
just its beliefs about future predictions.

Another important limitation of the previous SGG works
is related to the way the models are trained and evaluated.
In particular, common evaluation metrics, recall [51] and
mean recall (mRecall) [6, 44], are not directly tied to the
training objective of the SGG models, which typically min-
imize the cross-entropy loss [60]. The problem is exacer-
bated by the fact that these metrics focus on different and
often conflicting properties, so training a single model that
maximizes both metrics is challenging [43, 22]. For ex-
ample, recall is dominated by frequent relationships [60],
while mRecall assigns an equal weight to both frequent and
rare relationships [6, 64]. A common method to improve
the model on the target metric is to introduce an induc-
tive bias favouring the metric via a carefully designed loss
function [23, 29, 41] or features [60, 64]. To improve the
model on the target metric, we take a different approach and
leverage a reinforcement learning (RL)-based training strat-
egy that enables the direct optimization of the target metric,
bridging the gap between training and evaluation. The RL
approach also aligns well with our Seq2Seq model as we
train our RL policy to make sequential relationship predic-
tions in an optimal order w.r.t. to the target metric (reward).

In summary, this paper makes the following contribu-
tions:
• Inspired by neural machine translation and our con-

ditional SGG analysis (§ 2), we propose an encoder-
decoder model based on Transformers with a sequential

autoregressive decoder (§ 4).
• We introduce an RL training strategy that enables the

direct optimization of the target metrics, bridging the
gap between training and evaluation (§ 4.4.2). by re-
moving the exposure bias. In particular, we employ a
Monte Carlo search self-critical policy gradient training
approach to accurately estimate the action-value function
for our model (§ 4.4.2).

• We obtain state-of-the-art results on both recall and mRe-
call metrics while maintaining computational efficiency
during training and inference (§ 5).

2. Conditional Scene Graph Generation

A scene graph [18] is defined as a set of objects and the
relationships between them. We define a categorical triplet
using a subject, object and their relationship. For instance
ym = 〈man, on, surfboard〉, is the mth triplet in the image.
The scene graph can be viewed as a set of M such triplets
{ym}M1 . We further assume some canonical order of triplets
(e.g. from the left of the image to the right [60]) and define
an ordered triplet set Y1:M = {y1, ..., yM }. Applying the
chain rule, we define the conditional SGG as a task of se-
quentially inferring the relationship triplets conditioned on
all previously predicted triplets:

p(Y1:M ) =

M∏
m=1

p(ym|
m−1⋂
j=1

yj)

= p(yM |Y1:M−1)p(yM−1|Y1:M−2)...p(y2|y1)p(y1).

(1)

In the above formulation we ignore visual features as-
suming that all predictions are conditioned on the image in
the way specific to a particular method (see § 4). The ma-
jority of SGG methods assume conditional independence of
triplets and predict all triplets in parallel. To demonstrate
that this assumption is limiting we analyse the relationship
co-occurrence in the Visual Genome (VG) dataset [25]. We
follow a setup similar to [60], and first compute the co-
occurrence likelihoods between pairs of relationship triplets
p(y2|y1) using the training set of VG. We observe a strong
co-occurrence bias, with most p(y2|y1) distributions being
highly peaked (Figure 2, top). For example, for 〈man, on,
beach〉 there are only a few triplets such as 〈man, wear-
ing, shorts〉 and 〈man, holding, surfboard〉 that co-occur
frequently in the dataset (Figure 2, top left). By extending
this example to three triplets p(y3|y1, y2), the distribution
remains steep but the top co-occurring triplets change. For
example, by conditioning on 〈man, on, beach〉 and 〈horse,
on, beach〉 the top triplet changes to 〈person, riding, horse〉
clearly demonstrating the effect of knowing that both “man”
and “horse” are on the beach (Figure 2, top right).

We can expand the sequence of conditioning triplets to
arbitrary size m. To avoid the prohibitive cost of com-
puting joint probabilities we use a simple approximation:
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Figure 2: VG analysis based on scene graph annotations with-
out considering images or bounding boxes. (top) Triplet co-
occurrence in scene graphs has a peaked distribution. The top
candidates can be selected reasonably well when conditioned on a
single triplet (left) and two triplets (right), including rare relation-
ships (in red). (bottom) Conditioning allows us to accurately pre-
dict a triplet given other (already predicted or ground truth) triplets
in the image. This motivates our conditional inference pipeline.

p(ym+1|Y1:m) =
∑m

i p(ym+1|yi). For small m we veri-
fied that this approximation closely matches the target dis-
tribution, particularly when it is used to rank the top co-
occurring relationships. We then simulate a sequential pre-
diction process and use these probabilities to predict triplets
in a given test image while conditioning on increasingly
larger set of ground truth triplets (i.e. assuming a perfect
model): p(ŷm+1|Y1:m), where m is the history size. At
each step we sample one ground truth triplet per test im-
age and check if it is in the top-100 triplets co-occurring
with triplets predicted from Y1:m, we then average this ac-
curacy across all test images. To imitate the effect of the re-
cently introduced mRecall metric [6, 44], we also compute
the per-predicate accuracy for all images and then average
over all predicate classes. We found that conditioning on
more triplets (longer historym) substantially improves both
accuracies (Figure 2, bottom). Our finding indicates that the
model is able to make an increasingly better prediction by
leveraging the information from the revealed relationships.
This motivates our Seq2Seq model described in the follow-
ing sections.

3. Related Work

SGG. Scene graphs were proposed as a visually
grounded graphical structure of an image with localized ob-
jects as nodes and pairwise predicates as the edges [18, 52].
The visual relationship detection/scene graph generation
task was formalized first by [31]. The standard relation-
ship detection pipeline [31] comprises object detection with
off-the-shelf fine-tuned weights to predict objects, and pair-
wise predicate classification [31, 65, 62, 58, 9, 63, 27,
51, 60, 57, 32, 33]. We follow this protocol to disen-

tangle object detection error from relationship detection
and focus on reasoning over the relationships. Recent re-
search [64, 6, 44, 43, 29, 54, 8] address the long-tail is-
sue by improving mean recall as opposed to simple recall
dominated by most frequent relationships. Several recent
works [43, 41, 23, 22, 30, 20] focus on compositional gen-
eralization metrics in SGG, which is an interesting avenue
to apply our method in the future.

Contextual Models. Context has been shown to be
useful in generating better predictions in several recent
works [17, 7, 48]. Our work is closest to Neural Motifs
(NM) [60]. In NM, the Bi-LSTMs model is used to cap-
ture the global context and structural regularities in scene
graphs. NM constructs the global context from all detected
objects in a given image. NM then leverages the global con-
text to refine feature-level representations for individual ob-
jects and possible relationships between them. In contrast,
our approach first encodes global context and then sequen-
tially updates it by leveraging information from triplets that
have been decoded so far. This is achieved by applying a
Transformer architecture that enables joint conditioning on
all predicted history which we demonstrate to be important
for maximizing SGG performance.

Attention. Prior work [55, 35] that applies attention
in visual relationship detection start by defining a near-
est neighbor graph. Attention is used to capture infor-
mation about the graph structure by encoding it similar
to graph attention networks (GAT) [46]. In particular,
Graph R-CNN[55] applies GAT over visual similarity while
graph self-attention [35] additionally embeds a pair of ob-
ject features and linguistic relationships jointly. Transform-
ers [45] have been successfully adopted in computer vi-
sion [36, 11, 12, 13]. We use Transformers in an encoder
decoder based architecture. However, unlike other atten-
tion based methods in this domain, our decoder makes se-
quential predictions conditioned on previous outputs and
the model is trained in an auto regressive way. In a parallel
work [24] Relational Transformers were applied to visual
relationship detection. However, our model is explicitly
conditioned on triplet predictions and uses Reinforcement
Learning (RL) to optimize for the specific metric.

Reinforcement Learning. Using RL for SGG has re-
mained under explored. [28] built a semantic action graph
using language priors and formulated SGG as a single
agent decision-making process. CMAT [5] proposed a
counterfactual critic model using multi agent policy. DG-
PGNN [19] proposed a probabilistic model together with
Q-learning to infer a scene graph in a sequential node-by-
node fashion. In contrast to [28, 5, 19], our model works on
subject-predicate-object triplets and leverages Transformers
to capture global context. In addition, our work explores the
use of mean recall as a reward to tackle the long-tail distri-
bution on SGG datasets.
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Figure 3: Seq2Seq model architecture. Each image is first passed through an object detector to obtain object bounding boxes and
representations X . X are fed into the Transformer encoder to obtain contextualised object embeddings XB . During decoding, at each
m + 1-th time step, the decoder takes all of the previously predicted relationship triplets Y1:m and forms the history embedding that
summarizes the current prediction history. All possible pairs of contextualised object embeddings (excluding already predicted pairs) are
then concatenated with the history embedding to predict the relationships. Object pair with the highest predicted relationship probability
is then taken as the next output triplet and the decoding process is repeated.

4. Our Approach

In this section we describe our encoder-decoder ap-
proach. First, we briefly overview the multi-head self-
attention (MSA) block and the encoder architecture. Then
we describe our novel relationship decoder and optimiza-
tion approach. We employ the Transformer architecture [45,
11] due to its effectiveness in capturing long-term depen-
dencies and the ability to train in parallel. At the core of the
Transformer is the multi-head self-attention:

MSA(Q,K, V ) = Concat(SA1,SA2, ...,SAh)W
O (2)

SAi = Softmax(
QiK

T
i√
d

)Vi, (3)

where SA refers to a single attention head;Q,K and V refer
to Query, Key and Value vectors, whose meaning depends
on the particular component of our pipeline where it is used.
MSA concatenates the outputs from all attention heads fol-
lowed by the projection by trainable parameters WO.

4.1. Overall Pipeline

First, given an image, the object detector (e.g. Faster-
RCNN [37]) returns a set of bounding boxes of N ob-
ject instances X = {x1, ..., xN}. The goal of our vi-
sual relationship prediction model is to learn the mapping
f : Y = f(X), where Y = {y1, ..., yM} refers to the or-
dered set of M relationship triplets in the image. Represen-

tations X are obtained based on spatial, semantic and vi-
sual features following [64]. X are treated the same way as
text tokens in natural language processing, and we apply an
encoder-decoder architecture to predict the relationships Y .
Objects representations are passed through the Transformer
encoder to produce contextualised embeddings that contain
both object specific information and global scene context.
The decoder then operates in an autoregressive manner, at
each time step consuming the previously generated relation-
ship triplets to generate the next triplet. The full architecture
diagram is shown in Figure 3.

4.2. Object Encoder

To capture the global context of a scene, we follow the
standard Transformer encoder architecture and form a cas-
cade of B identical blocks, where each block applies multi-
head self-attention. Formally, the new object embeddings
produced by the (b+ 1)-th Transformer block are given by:

Xb+1 = FFN(MSA(Xb, Xb, Xb)) +Xb (4)
where Xb is the output from the b-th Transformer block and
FFN consists of two linear transformations with a ReLU ac-
tivation in between, with X1 = X . The final output embed-
dings XB from the last block encode both object specific
information and global context information from other ob-
jects in the visual scene. These embeddings are consumed
by the decoder to generate the relationship predictions.



Table 1: VG mRecall results.

PRDCLS SGCLS SGDET
mRecall@: 20 50 100 20 50 100 20 50 100

MOTIFS+TDE(GATE) [43] 18.5 24.9 28.3 11.1 13.9 15.2 6.6 8.5 9.9
GB-NET [59] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5
VTransE+TDE(GATE) [43] 18.9 25.3 28.4 9.8 13.1 14.7 6.3 8.5 10.2
VCTree+TDE(SUM) [43] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
Seq2Seq - RL (ours) 21.3 26.1 30.5 11.9 14.7 16.2 7.5 9.6 12.1

Ablation Results
Seq2Seq - encoder only 18.1 25.2 28.6 8.7 11.9 13.7 6.8 8.9 10.2
Seq2Seq - teacher forcing 19.6 25.7 29.3 10.5 13.2 15.1 7.0 9.1 10.8
Seq2Seq - scheduled sampling 21.0 25.9 30.2 10.7 13.5 15.4 7.2 9.2 11.0

4.3. Relationship Decoder

Our proposed relationship decoder predicts visual rela-
tionships one at a time in an autoregressive manner. Given
the contextualized object features XB ∈ RN×D and m al-
ready predicted visual relationships Ŷ1:m, the goal of the
relationship decoder is to learn the conditional probability
of the (m+1)-th visual relationship p(ŷm+1|XB , Ŷ1:m) that
maximizes the probability of (m+1)-th triplet in the ground
truth sequence. Note that during training, the predicted se-
quence Ŷ1:m can be replaced with the ground truth sequence
Y1:m, but during inference the model conditions only on its
own predictions.

Decoder input. Given the predicted visual relationships
sequence Ŷ1:m, we first convert this sequence to vector rep-
resentations to be used as input into the decoder model. For
each predicted triplet ŷ ∈ Ŷ1:m, we concatenate the em-
beddings of (XB [i], E[r], XB [j]), where i and j are object
and subject indices in ŷ. E is the learned embeddings for
all predicates in the training set, and r is the predicate in-
dex in ŷ. The concatenated embeddings is then fed into
a fully-connected layer and projected into D-dimensional
triplet representations. At the beginning of the decoding,
we use a learned D-dimensional vector as the first input
embedding to start the decoding. This is equivalent to the
special <SOS> (start of sequence) token in traditional se-
quence transduction tasks, where the <SOS> token informs
the decoder to start generating the output sequence.

The projected D-dimensional triplet representations are
fed into a stack of K identical Transformer decoder blocks.
Each Transformer decoder block consists of MSA (Equa-
tion 5) followed by cross-attention between contextualized
object embeddings XB and the intermediate triplet repre-
sentations H (Equation 6):

Hk+1 = MSA(Yk, Yk, Yk) + Yk (5)

Yk+1 = FFN(Hk+1 + MSA(Hk+1, XB , XB)) (6)

where Hk+1 is the intermediate output from the (k + 1)-th
self-attention block. The cross-attention enables the model
to correlate the current relationship predictions in Ŷ1:m with
all detected objects in the visual scene, and update its beliefs
about what other relationships present. After K blocks, the
final representation YK is used to predict the next relation-
ship triplet. We concatenate the history embedding in YK

Table 2: VRD recall results.

Relationship Detection Phrase Detection
k = 1 free k k = 1 free k

Recall@: 50 100 50 100 50 100 50 100
ViP-CNN [27] 17.3 20.0 17.3 20.0 22.7 27.9 22.7 27.9
VRL [28] 18.1 20.7 18.1 20.7 21.3 22.6 21.3 22.6
CAI [65] - - 20.1 23.3 - - 23.8 25.2
KL-Distill [58] 19.1 21.3 22.6 31.8 23.1 24.0 26.4 29.7
ZoomNet [57] 18.9 21.4 21.3 27.3 24.8 28.0 29.0 37.3
CAI + SCA-M [57] 19.5 22.3 22.3 28.5 25.2 28.8 29.6 38.3
HetH [49] 22.4 24.8 26.8 31.6 30.6 35.5 35.4 43.0
RelDN [64] 25.2 28.6 28.1 33.9 31.3 36.4 34.4 42.1
Seq2Seq - RL (ours) 26.1 30.2 29.9 35.9 33.4 39.1 36.8 46.2

Ablation Results
Seq2Seq - encoder only 22.6 27.9 24.4 31.6 29.2 34.1 31.8 39.9
Seq2Seq - teacher forcing 24.0 29.0 27.1 34.4 30.7 37.2 33.0 43.9
Seq2Seq - scheduled sampling 24.5 29.8 27.5 34.7 31.5 37.7 34.2 44.3

with all possible remaining object pairs that can have a rela-
tionship, predict the relationship for each pair, and take the
triplet with the highest probability:
p(ŷ|XB , Y1:m)

= Softmaxr(Concat(XB [i], YK [m], XB [j]) ∗Wr)

ŷm+1 = argmax
ŷ

p(ŷ|XB , Y1:m)
(7)

Here, i and j are subject and object indices in ŷ and r is
the predicate between them. YK [m] is the m’th embedding
in the m ×D output YK of the decoder, and represents the
contextualised embedding of the last predicted relationship
triplet at step m. The triplet with the highest probability
ŷm+1 is taken as the decoder prediction at step m + 1, and
the process is repeated until termination criteria is reached.

4.4. Model Optimization

We consider two approaches for training our model. One
leverages the standard “teacher forcing” framework, while
the other is our proposed strategy based on reinforcement
learning.

4.4.1 Teacher Forcing

Sequence-to-sequence models are typically trained with the
teacher forcing strategy [50]. At each time step, instead
of conditioning on the model’s own predictions in an au-
toregressive fashion, the model is provided with the ground
truth from the previous step to learn the conditional proba-
bility of the next ground truth triplet p(ym+1|XB , Y1:m). To
remove the bias from introducing a particular order during
training, we randomly shuffle the ground truth relationship
triplets for each image to form the input sequence, and this
shuffling is repeated for each batch. The teacher forcing ob-
jective only maximizes the probability of positive examples,
i.e., pairs of objects that have a relationship. However, in
the task of visual relationship prediction, learning to predict
which objects do not have a relationship is equally critical
to model performance [60]. To incorporate negative exam-
ples, at each decoding step, we randomly sample L object
pairs that do not have relationships, and train the model to



Table 3: VG Recall results for the SGDET, SGCLS and PRDCLS tasks with and without graph constraints. *We omit RelDN results on
SGCLS and PRDCLS where they evaluate using subject and object pairs from the ground truth, which is inconsistent with other work.

Graph Constraint No Graph Constraint
SGDET SGCLS PRDCLS SGDET SGCLS PRDCLS

Recall@: 20 50 100 20 50 100 20 50 100 50 100 50 100 50 100
Associative Embedding[34] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4 9.7 11.3 26.5 30.0 68.0 75.2
Message Passing[51] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0 - - - - - -
Graph R-CNN[55] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1 - - - - - -
Message Passing+[60] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 22.0 27.4 43.4 47.2 75.2 83.6
Frequency+Overlap[60] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 28.6 34.4 39.0 43.4 75.7 82.9
MotifNet-LeftRight[60] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 30.5 35.8 44.5 47.7 81.1 88.3
RelDN[64] 21.1 28.3 32.7 -* -* -* -* -* -* 30.4 36.7 -* -* -* -*
VCTree[44] 22.0 27.9 31.3 35.2 38.1 38.8 60.1 66.4 68.1 - - - - - -
HetH[49] 21.6 27.5 30.9 33.8 36.6 37.3 59.8 66.3 68.1 - - - - - -
GB-Net[59] - 26.4 30.0 - 38.0 38.8 - 66.6 68.2 29.4 35.1 47.7 51.1 83.6 90.5
Seq2Seq - RL (ours) 22.1 30.9 34.4 34.5 38.3 39.0 60.3 66.4 68.5 30.9 37.0 46.9 51.2 83.6 90.8

Ablation Results
Seq2Seq - encoder only 21.0 28.5 31.9 32.8 35.4 36.2 59.2 64.8 67.1 30.2 36.2 45.1 47.8 81.2 88.2
Seq2Seq - teacher forcing 21.4 29.6 33.0 33.1 36.9 37.4 59.4 65.3 67.2 30.5 36.3 45.7 49.2 82.4 89.9
Seq2Seq - scheduled sampling 21.7 30.1 34.1 33.6 37.6 38.4 59.6 65.8 67.9 30.7 36.8 46.0 49.8 83.1 90.2

predict the “no relationship” predicate for these pairs. De-
noting the l-th sampled negative triplet as y−l , the teacher
forcing objective for our model can be formulated as:

L = −
M∑

m=1

[
log p(ym+1|XB , Y1:m) +

L∑
l=1

log p(y−
l |XB , Y1:m)

]
(8)

4.4.2 Reinforcement Learning

The teacher forcing objective generally leads to stable and
fast learning. However, optimizing with maximum likeli-
hood does not necessarily translate to optimal performance
on the target metric such as recall. There are two main rea-
sons for this. First, during training the model is provided
with the ground truth as input history, while during infer-
ence the model has to rely on its own predictions. Second,
the maximum likelihood objective does not directly opti-
mize for the target metric, resulting in the discrepancy be-
tween training and evaluation. We address both of these
problems by proposing an RL optimization approach. RL
enables the model to explore different policies during train-
ing to learn the one that yields maximum reward at infer-
ence time. We define rewards based on the target metric
which allows for direct optimization of non-differentiable
metrics and reduces the gap between training and inference.

We focus on two common metrics, recall and mRecall,
but analogous approach may be extended to other metrics.
Previous works noted a trade-off between recall and mRe-
call [43, 59, 22]. Therefore, we design our reward func-
tion as a convex combination of recall and mRecall scores,
and use a hyperparameter α ∈ [0, 1] to control their relative
importance. Suppose that Ŷ1:M ′ is the model’s predicted
triplets for a given image, where M ′ is the length of pre-
dicted sequence. We denote the recall and mRecall scores

for Ŷ1:M ′ as r(Ŷ1:M ′) and mr(Ŷ1:M ′) respectively. The re-
ward is then defined as:

R(Ŷ1:M ′) = α · r(Ŷ1:M ′) + (1− α) ·mr(Ŷ1:M ′) (9)
A major challenge in applying RL to the SGG task is the
lack of intermediate reward, since the reward can only be
computed on the final predicted triplet set, while we aim
for the model to learn the optimal action at each decoding
step. Following [42], the RL objective with no intermediate
reward can be defined as:

LRL = E
[
R(Ŷ1:M ′)|s0

]
=

∑
ŷ1∈Y

p(ŷ1|s0)Q(s0, ŷ1) (10)

where s0 is the initial state, and Q(s, a) is the action-value
function defined as the expected accumulative reward start-
ing from state s, taking action a, and then following the
policy specified by the model. Y is the set of all possible
triplets that the model can predict in the first decoding step.

To estimate Q(s, a), we note that in the final M ′-th step
the model outputs ŷM ′ so we have Q(s = Ŷ1:M ′−1, a =
ŷM ′) = R(Ŷ1:M ′). However, to evaluate the intermediate
step, the action-value should reflect not only the quality of
the already predicted relationships, but also the quality of
the predictions that the model can potentially generate in the
future. To this end we apply a Monte Carlo search [40] with
roll-out to sample the remaining predictions. For each inter-
mediate state s = Ŷ1:m, we sample the remaining M ′ −m
visual relationships T times. The sampling is done accord-
ing to the Softmax probabilities (Equation 7) at each de-
coding step from m + 1 to M ′. We then concatenate each
sample Ŷm+1:M ′ with the already predicted visual relation-
ships Ŷ1:m to form the complete prediction and compute the
reward. The action-value Q(s = Ŷ1:m, a = ŷm+1) for an
intermediate state s = Ŷ1:m where m < M ′ can thus be



Figure 4: VG recall vs mRecall performance for different
values of α.

defined as:

Q(s = Ŷ1:m, a = ŷm+1) =
1

T

T∑
t=1

R(Ŷ
(t)
1:M ′) (11)

where Ŷ (t)
1:M ′ refers to the t-th sampled sequence starting

from Ŷ1:m. It can be observed that the action-value function
is iteratively defined as the next-state value starting from
Ŷ1:m and rolling out to the end.

The gradient of the objective function LRL with re-
spect to the model parameters is derived using policy gradi-
ent [42] as:

∇LRL ≈
M ′∑
m=1

∑
ŷm+1∈Y

∇p(ŷm+1|Ŷ1:m) ·Q(Ŷ1:m, ŷm+1)

=
M ′∑
m=1

∑
ŷm+1∈Y

p(ŷm+1|Ŷ1:m)∇ log p(ŷm+1|Ŷ1:m) ·Q(Ŷ1:m, ŷm+1)

(12)
Note that if we directly use the weighted sum of recall and
mRecall in Equation 9, most sequences will get a positive
reward even if they are highly sub-optimal. To provide a
stronger signal to the model, we instead use self-critical
training [38], and take the difference between rewards for
sampled and greedily decoded sequences as the reward.
This encourages the model to explore policies that lead to
better samples than greedy decoding.

5. Experiments

We evaluate our model on two public SGG bench-
marks, Visual Relationship Detection (VRD) [31] and Vi-
sual Genome (VG) [25]. On both datasets we compare our
approach to an extensive set of leading baselines described
in the Related Work section.

VRD. We use the dataset split from [58] and report re-
call@50 and 100. Following [58], we benchmark our model
on two standard tasks, Relationship Detection and Phrase
Detection, with and without the graph constraint denoted as
k = 1 and free-k respectively. The graph constraint lim-
its prediction to one relationship predicate for each object
pair, while no graph constraint accepts an arbitrary number
of predicates.

VG. We use the dataset split from [51] and the VGG de-

Figure 5: Comparison of training and inference times. For
inference we show results for different prediction block
sizes. Instead of predicting visual relationship one at a time,
we take multiple top predicted relationship triplets (block
size) at each decoding step.

tection model weights from [64]. Following the evaluation
protocol from [51], we compute recall and mRecall on three
tasks: scene graph detection (SGDET), scene graph classi-
fication (SGCLS), and predicate classification (PRDCLS).
As in VRD we benchmark performance with and without
the graph constraint.

We train our model using the Adam optimizer [21] with
β1 = 0.9, β2 = 0.999, batch size of 4096, and learning rate
of 1e − 3. We apply linear learning rate warmup over the
first 1K steps, and cosine learning rate decay afterwards.
We use the standard Transformer blocks for both encoder
and decoder [45], with four encoder blocks and two decoder
blocks. All blocks have embedding size of 128 and 4 atten-
tion heads. The model is trained for 500 epochs on VRD
and 2K epochs on VG. We train the model with teacher
forcing over the first half of the epochs, and alternate be-
tween teacher forcing and reinforcement learning over the
second half of the epochs. We set the number of playout
samples T to be 16 for the reinforcement learning loss.

5.1. Results and Analysis

mRecall results on VG are shown in Table 1, and recall
results on the VRD and VG datasets are shown in Tables 2
and 3 respectively. We observe that our approach, denoted
as Seq2Seq, outperforms the baselines on most tasks and
recall thresholds. We improve over the prior state-of-the-
art by 4.6% (+1.6) on all metrics on average, with most
improvements observed on the VG SGDet task.

To investigate the contribution from each component of
our model we conduct extensive ablation experiments, and
ablation results are shown at the bottom of each table. We
first remove the sequential decoder and ablate the non-
sequential architecture (Seq2Seq-encoder only) where we
only use the Transformer encoder to obtain the contextual-
ized bounding box representations. For each pair of objects,
we concatenate their contextualized representations, and
use an FNN layer followed by a Softmax layer over the pos-



sible relationship predicates (including the no relationship
predicate) to obtain the relationship probabilities. Next, we
keep the encoder-decoder architecture but remove the RL
objective, and only train the model with teacher forcing
(Seq2Seq-teacher forcing). In addition to teacher forcing,
we include the results for the Seq2Seq approach trained
with the scheduled sampling strategy (Seq2Seq-scheduled
sampling) [3]. The scheduled sampling randomly replaces
the ground-truth with the model’s predictions from the pre-
vious step, which adapts the model the consume its own
predictions instead of ground truth.

We observe in Tables 1 and 2 that on both VRD and VG
datasets removing the sequential decoder from the model
leads to considerable performance degradation on all tasks
and recall thresholds. This demonstrates the effectiveness
of conditional sequential decoding for scene graph genera-
tion. Similarly, training with teacher forcing also hurts per-
formance relative to the full RL training. Scheduled sam-
pling partially closes the gap between teacher forcing and
RL but doesn’t eliminate it completely, and performance
still drops by over a point on some tasks. These results
indicate that optimizing for the target metric while simul-
taneously learning to condition on predictions instead of
ground truth is highly beneficial for the SGG task. Lastly,
to estimate the effect that training sequence sampling has on
performance, we repeated SGDET Seq2Seq-RL training 10
times with different seeds. We observed that the variation
in performance across training runs was very small with a
standard deviation of 0.13.

Recall vs mRecall. We perform a hyperparameter sen-
sitivity analysis for α in our reward function in Equation 9.
We vary α from 0 to 1, and report recall and mRecall @100
results on the VG SGDet task shown in Figure 4. We ob-
serve that the recall and mRecall metrics are inversely cor-
related, i.e., improvement in recall results in degradation of
mRecall, and vice versa. This is consistent with previously
reported findings by other works in this area [43, 59, 22].
An additional advantage of our RL approach is that it al-
lows to directly control the degree to which each metric con-
tributes to the reward, and thus directly optimize the model
to achieve the desired balance between the two metrics.

Training and Inference Speed. We evaluate and com-
pare the average per image training and inference time for
our Seq2Seq approach and several leading baseline mod-
els, results are shown in Figure 5. For fair comparison
all models are trained and timed on the same server. For
our Seq2Seq approach, we report training times for the
three ablation architectures described above and the full RL
model. When the model is trained with teacher forcing only,
the Transformer architecture enables parallel decoding via
causal masking which significantly accelerates forward and
backward passes. Training with scheduled sampling or RL
requires sampling the predicted relationship triplets one at a

Step: Decoded Triplet
m=1: <tire, on, motorcycle>
m=2: <car, near, motorcycle>
m=3: <motorcycle, on, street>
m=4: <person, wearing, helmet> 
m=5: <seat, under, person>
m=6: <person, riding, motocycle>
(Riding increases 15% -> 59%)

Step: Decoded Triplet
m=1: <motorcycle, has, tire>
m=2: <tree, behind, motorcycle>
m=3: <tree, behind, person>
m=4: <helmet, on, motorcycle>
m=5: <person, near, motorcycle>
(Near increases 31% -> 58%)

Figure 6: VG qualitative examples. For each image we
show the decoded relationship triplet sequence produced by
our model.

time, and is thus less efficient. At inference time, we bench-
mark block decoding where multiple top predicted triplets
(block size) are taken at each decoding step. Block decod-
ing can significantly accelerate inference by requiring fewer
forward passes through the model. But, as seen in Figure 5,
it can also lead to accuracy degradation by reducing the ef-
fectiveness of sequential conditioning. In all cases, even de-
coding one triplet at a time (block size = 1), inference time
in our model is highly competitive with leading baselines
while we also substantially improve recall performance.

Qualitative Results. Figure 6 shows two scenes with
motorcycles. In both scenes, independent prediction has
difficulty distinguishing “riding” vs “near” relationships be-
tween “person” and “motorcycle”. On the right we show
a conditional decoding sequence. In both cases our model
first identifies easier grounding relationships for motorcycle
and person, which then enables it to correctly predict “rid-
ing” and “near” for the top and bottom images respectively.
We see a very substantial increase in probability relative to
the independent prediction (15% → 59% for “riding” and
31%→ 58% for “near”).

6. Conclusion

We explored contextual models showing that they are
highly effective for the scene graph generation task. We
analyzed the relationships statistics in the training data
demonstrating strong conditional dependence. Leveraging
this result, we proposed a Seq2Seq model that makes pre-
dictions by explicitly conditioning on the already predicted
relationships in an autoregressive way. In addition, we
introduced a reinforcement learning based training strat-
egy that enables the direct optimization of the target non-
differentiable metrics.
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Stephan Günnemann. Scene graph reasoning for visual ques-
tion answering. arXiv preprint arXiv:2007.01072, 2020. 1

[16] Drew A Hudson and Christopher D Manning. Learning by
abstraction: the neural state machine. In Proceedings of the
33rd International Conference on Neural Information Pro-
cessing Systems, pages 5903–5916, 2019. 1

[17] Zih-Siou Hung, Arun Mallya, and Svetlana Lazebnik. Con-
textual translation embedding for visual relationship detec-
tion and scene graph generation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2020. 3

[18] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li,
David Shamma, Michael Bernstein, and Li Fei-Fei. Image
retrieval using scene graphs. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3668–3678, 2015. 1, 2, 3

[19] Mahmoud Khademi and Oliver Schulte. Deep generative
probabilistic graph neural networks for scene graph gener-
ation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 11237–11245, 2020. 3

[20] Siddhesh Khandelwal, Mohammed Suhail, and Leonid Si-
gal. Segmentation-grounded scene graph generation. arXiv
preprint arXiv:2104.14207, 2021. 3

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015. 7

[22] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W
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Taylor, Aaron Courville, and Eugene Belilovsky. Graph
density-aware losses for novel compositions in scene graph
generation. arXiv preprint arXiv:2005.08230, 2020. 2, 3

[24] Rajat Koner, Poulami Sinhamahapatra, and Volker
Tresp. Relation transformer network. arXiv preprint
arXiv:2004.06193, 2020. 3

[25] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International journal of computer vision,
123(1):32–73, 2017. 2, 7

[26] Soohyeong Lee, Ju-Whan Kim, Youngmin Oh, and
Joo Hyuk Jeon. Visual question answering over scene graph.
In 2019 First International Conference on Graph Computing
(GC), pages 45–50. IEEE, 2019. 1

[27] Yikang Li, Wanli Ouyang, Xiaogang Wang, and Xiao’ou
Tang. Vip-cnn: Visual phrase guided convolutional neu-
ral network. In Proceedings of the IEEE conference on



computer vision and pattern recognition, pages 1347–1356,
2017. 3, 5

[28] Xiaodan Liang, Lisa Lee, and Eric P Xing. Deep variation-
structured reinforcement learning for visual relationship and
attribute detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 848–857,
2017. 3, 5

[29] Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng Tao.
Gps-net: Graph property sensing network for scene graph
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3746–
3753, 2020. 2, 3

[30] Hengyue Liu, Ning Yan, Masood Mortazavi, and Bir Bhanu.
Fully convolutional scene graph generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11546–11556, 2021. 3

[31] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-
Fei. Visual relationship detection with language priors. In
European conference on computer vision, pages 852–869.
Springer, 2016. 3, 7

[32] Yichao Lu, Cheng Chang, Himanshu Rai, Guangwei Yu, and
Maksims Volkovs. Learning effective visual relationship de-
tector on 1 gpu. arXiv preprint arXiv:1912.06185, 2019. 3

[33] Yichao Lu, Cheng Chang, Himanshu Rai, Guangwei Yu, and
Maksims Volkovs. Multi-view scene graph generation in
videos. International Challenge on Activity Recognition (Ac-
tivityNet) CVPR 2021 Workshop, 2021. 3

[34] Alejandro Newell and Jia Deng. Pixels to graphs by as-
sociative embedding. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, pages 2168–2177, 2017. 6

[35] Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang,
and Jiebo Luo. Attentive relational networks for mapping
images to scene graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3957–3966, 2019. 3

[36] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jonathon Shlens. Stand-alone
self-attention in vision models. In Proceedings of the 33rd
International Conference on Neural Information Processing
Systems, pages 68–80, 2019. 3

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015. 4

[38] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret
Ross, and Vaibhava Goel. Self-critical sequence training for
image captioning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7008–
7024, 2017. 7

[39] Jiaxin Shi, Hanwang Zhang, and Juanzi Li. Explainable and
explicit visual reasoning over scene graphs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8376–8384, 2019. 1

[40] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.
6

[41] Mohammed Suhail, Abhay Mittal, Behjat Siddiquie, Chris
Broaddus, Jayan Eledath, Gerard Medioni, and Leonid Si-
gal. Energy-based learning for scene graph generation. arXiv
preprint arXiv:2103.02221, 2021. 2, 3

[42] Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000. 6,
7

[43] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 1, 2, 3, 5,
6, 8

[44] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo,
and Wei Liu. Learning to compose dynamic tree structures
for visual contexts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6619–
6628, 2019. 2, 3, 6

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
3, 4, 7
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