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Abstract

We present our winning solution to the Open Images
2019 Visual Relationship challenge. This is the largest chal-
lenge of its kind to date with nearly 9 million training im-
ages. Challenge task consists of detecting objects and iden-
tifying relationships between them in complex scenes. Our
solution has three stages, first object detection model is fine-
tuned for the challenge classes using a novel weight trans-
fer approach. Then, spatio-semantic and visual relation-
ship models are trained on candidate object pairs. Finally,
features and model predictions are combined to generate
the final relationship prediction. Throughout the challenge
we focused on minimizing the hardware requirements of our
architecture. Specifically, our weight transfer approach en-
ables much faster optimization, allowing the entire architec-
ture to be trained on a single GPU in under two days. In ad-
dition to efficient optimization, our approach also achieves
superior accuracy winning first place out of over 200 teams,
and outperforming the second place team by over 5% on the
held-out private leaderboard.

1. Introduction

Visual relationship detection is a core computer vision
task that has gained a lot of attention recently [4, 12, 13, 14].
The task comprises of object detection followed by visual
relationship prediction to identify relationships between
pairs of objects. Relationship identification involves infer-
ring complex spatial, semantic and visual information be-
tween objects in a given scene, which is a challenging task.
Successfully solving this task is a natural first step towards
scene understanding and reasoning. The Open Images 2019
Visual Relationship challenge introduces a uniquely large
and diverse dataset of annotated images designed to bench-

∗Authors contributed equally and order is determined randomly.

mark visual relationship models in a standardised setting.
The challenge dataset is based on the Open Images V5
dataset [5], which contains 9 million images annotated with
class labels, bounding boxes, segmentation masks and vi-
sual relationships.

The challenge task is to detect objects and their associ-
ated relationships. The relationships include human-object
relationships (e.g. “man holding camera”), object-object re-
lationships (e.g. “spoon on table”), and object-attribute re-
lationships (e.g. “handbag is made of leather”). Each of
the relationships can be expressed as a triplet, written as
a pair of objects connected by a relationship predicate e.g.
(“beer”, “on”, “table”). Visual attributes are also triplets
where object is connected with an attribute using the “is”
relationship e.g. (“table”, “is”, “wooden”). The challenge
contains 329 unique triplets, which span 57 different ob-
ject classes, 5 attributes, and 10 predicates. In this paper
we present our solution which ranked first out of over 200
teams, and outperformed the second place team by over
5% on the held-out private leaderboard. To make our ap-
proach more practical, we focus on minimizing the hard-
ware requirements during training. Specifically, we show
that through transfer learning we can significantly speed up
optimization, and train the entire model on a single GPU in
under two days.

2. Our Approach
Our pipeline consists of three stages. In the first stage,

object detection model fine-tuned for the challenge classes
generates object bounding boxes along with their associated
confidences. In the second stage, two separate models based
on gradient boosting and convolutional neural networks are
used to model spatio-semantic and visual features. Finally,
a third stage model takes outputs from the first two stages
as input and generates the final prediction. In this section,
we describe each stage in detail, and Figure 1 summarizes
the entire pipeline.
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Figure 1: Proposed visual relationship model architecture. Object detection model is first applied to get bounding boxes for
every object in the input image. Spatio-semantic and visual models are then applied to candidate object pairs to generate
initial relationship predictions. Finally, features and model predictions are combined in the last stage to output the final
relationship prediction. In this example our model outputs (“boy”, “hits”, “football”).

2.1. Object Detection With Partial Weight Transfer

Training object detection model from scratch in a rea-
sonable amount of time on a large dataset requires signif-
icant resources. For instance, one of the leading models
on the Open Images 2018 Object Detection Track needed
33 hours of training on 512 GPUs [1]. Instead of running
multiple costly and time consuming training experiments,
we focus speeding up optimization with limited hardware
resources. In order to achieve this, we propose the par-
tial weight transfer strategy. The main idea is to transfer as
much information from models trained on well-established
object detection benchmarks such as COCO [6] and Open
Images [5]. Minimal fine-tuning is then performed on the
target task dataset.

Transfer learning is a popular and economic approach
for improving generalization by transferring knowledge be-
tween datasets and domains. However, choosing which
model parts to keep or discard can have a significant im-
pact on the performance. A common approach in object de-
tection is to use a popular model such as Faster RCNN [7]
or Retina Net [9] pre-trained on large and general datasets
where high performance is observed. Then the classifica-
tion and regression heads are replaced with randomly ini-
tialized weights to train task-specific detectors. However,
we observed that fine-tuning the network this way can still
take significant amount of time to converge, and doesn’t al-
ways achieve high accuracy. To improve convergence we
propose to also initialise classification and regression heads
with pre-trained weights by approximately matching classes

between datasets.
We denote source and target task datasets as Ssrc and Stask

respectively. Ssrc is typically a large public dataset such as
COCO on which many of the leading models are trained
and released. Stask in our case is the challenge dataset, and
the aim is to transfer models from Ssrc to Stask with high
accuracy and minimal computational resources. The main
difficulty here is that the target dataset typically contains
classes not present in Ssrc. However, we hypothesize that
there should be common information learned by the model
for related classes between the two datasets. Following this
intuition, it should be possible to partially transfer model
weights for related classes from Ssrc to Stask and improve
fine-tuning. Figure 2 demonstrates this process. In this
example, weight vectors in the classification head of Ssrc
model associated with “car” and “dog” classes are directly
copied to corresponding classes in Stask. Similarly, weights
for the more general class “person” are transferred to re-
lated classes “woman”, “boy”, “girl”, and “man” in Stask.
Weights for classes that don’t have a match are randomly
initialized. Formally, given a mapping k → g(k) from task
class index k to source class index, the classification head
layer for the task model has the following structure:

zk =

{
ωtask
k · xn + btask

k if g(k) = ∅
ωsrc
g(k) · x

n + bsrc
g(k) otherwise

(1)

where xn is the input from previous layer, ωsrc
g(k) and bsrc

g(k)
are weights and biases transferred from the source dataset,
and ωtask

k and btask
k are randomly initialized parameters.
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Figure 2: Partial weight transfer diagram example. Clas-
sification head weights for “car” and “dog” classes are di-
rectly copied to corresponding classes in Stask. Weights for
the more general class “person” are extrapolated to related
classes “woman”, “boy”, “girl”, and “man” in Stask.

Applying this weight transfer even for approximate class
matches such as “person” → “boy”, enable us to signifi-
cantly accelerate fine-tuning to less than one day on a single
GPU and achieve better accuracy. In the challenge we use
detection models pre-trained on the popular COCO dataset
which has 80 classes. After matching classes between
datasets we were able to transfer classification weights for
44 of the 57 challenge classes.

Fine-tuned detection model can be independently eval-
uated on the related Open Images 2019 Object Detection
challenge by submitting predictions only for classes that are
common to both challenges. Table 1 shows detection mAP
performance for the Cascade RCNN [2] model pre-trained
on COCO and fine-tuned for visual relationship classes.
From the table we see that partial weight transfer signifi-
cantly improves leaderboard performance by over 35%. We
also found that training time was considerably reduced from
around one week to less than a day. Blending multiple mod-
els with test time image augmentation provides additional
performance boost, and we use this approach as the first
stage in our pipeline.

2.2. Spatio-Semantic and Visual Models

Given the bounding boxes predicted by the object de-
tection model, the relationship model aims to (1) detect
whether a two objects are related, and (2) predict their rela-
tionship. These tasks require simultaneously learning spa-
tial, semantic and visual features. In our experiments, we
find tree-based gradient boosting models (GBMs) to be ef-
fective for learning spatial and semantic features, while con-
volutional neural network (CNN) models excel at capturing
visual features. The second stage in our pipeline thus uti-

Object Detection Results (mAP)
Model Validation LB
Cascade RCNN [2] 0.43 0.048
Cascade RCNN [2] + PWT 0.53 0.065
Blend + TTA 0.56 0.068

Table 1: Results on the Open Images 2019 Object Detec-
tion challenge. Only 57 classes from the visual relation-
ship challenge are submitted. PWT and TTA denote partial
weight transfer and test time image augmentation respec-
tively.

lizes both GBM and CNN models to perform feature extrac-
tion for pairs of objects.

Spatio-Semantic Model. Spatial information such as lo-
cation of the object in the image and relative position be-
tween objects, plays an important role in relationship detec-
tion. Objects that are far away from each other less likely
to have a relationship, and relative position between ob-
jects can be very informative when determining relation-
ships such as “on” or “under”. Semantic information on the
other hand, can capture the likelihood of the two objects co-
occurring together or having a certain type of relationship.
We describe both types of information through features and
train a GBM model to predict relationship type. The fea-
tures include:

1. Object spatial features - we use features such as rel-
ative and absolute position of the object in the image
and size of the object (estimated by its bounding box).

2. Object semantic features - we include features such as
other objects that this object typically appears with and
types of relationships that in commonly has.

3. Pairwise spatial features - we encode information such
as relative position of the two objects, IOU between
their bounding boxes and Euclidean distance between
box centers.

4. Pairwise semantic features - similar to pairwise spatial
features, we summarize how frequently the two objects
appear together and types of relationships they typi-
cally have.

We consider two alternatives for defining the GBM train-
ing objective. The first option is to train a single GBM for
multi-class classification over all the possible relationships
with an additional “None” class for no relationship. The
second option is to train separate GBM models for every
relationship type with a binary classification objective. For
example, for the relationship type “under”, we find all pairs
of objects that can possibly form an “under” relationship.
Then label those that are present in the ground truth set as



Figure 3: Visual model pipeline example on one the challenge images. Here, spatio-semantic model is unable to correctly
predict the relationship and outputs high probability for “on”. Cropping the bounding boxes for “man” and “motorcycle”,
blacking-out the background and passing the resulting image through the visual CNN model reduces the probability for “on”
from 0.66 to 0.34.

positive samples and others as negative samples. The ad-
vantage of the first option is that it is more computationally
efficient and only requires a single model for all types of
relationships. However, empirically we find that the second
option performs consistently better. We presume that this
is due to the fact it allows the model to separately focus on
each relationship improving generalisation.

Visual Model. Models that rely solely on spatial and
semantic features have failure modes that can only be cor-
rected with visual information. One example of such failure
mode is shown in Figure 3. Here, both spatial and semantic
features indicate that the likely relationship is (“man”, “on”,
“motorcycle”). However, from visual inspection it is clear
that the man is actually next to the motorcycle and not on
it. To incorporate visual information we use a CNN-based
architecture. Given a pair of objects for which we aim to
predict the relationship, we first crop the image so it only
contains the union of the bounding boxes for the two ob-
jects. Then for each pixel in the cropped image that does
not belong to the bounding box of either object, we turn
it into background by making it black. This reduces back-
ground and scene clutter, and enables the model to focus on
the target objects. Analogous to the spatio-semantic model,
we also find that training separate models (fine-tuned from
the same backbone) for each relationship type yields bet-
ter results than single multi-class model. From Figure 3 we
see that the visual model reduces the probability of (“man”,
“on”, “motorcycle”) from 0.66 to 0.34.

2.3. Model Aggregation

The last stage takes predictions from the spatio-semantic
and visual models, and combines them to make the final
prediction. A straightforward way to combine models is
through averaging. However, depending on the properties
of the input scene, different types of model tend to perform
better and need to be selected accordingly. Averaging pre-
vents such specialisation, so in the last stage we train an-

other model that takes as input predictions from the second
stage together with image and target object pair features,
and learns how to optimally combine them. We also use
GBM here as decision trees can learn highly non-smooth
decision boundaries that are beneficial for specialisation.
To train the model we split the official training set into two
parts. All second stage models are trained on the first part,
and the ensemble model is trained on the second part.

3. Experiments

The challenge is based on the Open Images V5 dataset
which is a large-scale multi-modal collection of over 9 mil-
lion images. A subset of 1,743,042 images contain bound-
ing boxes, and we use this subset to train and validate the
object detection model. The challenge dataset is a subset
of the Open Images V5 data, and contains 391,073 labelled
relationship triplets from 100,521 images. There are a to-
tal of 329 unique triplets with 287 object-object relation-
ships over 57 unique object classes, and 42 object-attribute
“is” relationships over 5 attributes. Furthermore, an addi-
tional 99,999 images are used as the held-out test set that
is split 30%/70% for public and private leaderboards re-
spectively. All test labels are hidden and model evaluation
is done by submitting predictions to the Kaggle platform.
Public leaderboard score is available throughout the compe-
tition, while private leaderboard is released at the end and
used to compute final team rankings.

Class Imbalance. The object detection dataset contains
significant class imbalance with a long tail. Randomly sam-
pled mini-batch training with skewed class distribution over
emphasizes frequent classes. Since challenge objective as-
signs equal weight to every class, model bias towards popu-
lar classes can significantly hurt performance. To address
this problem we adopt a sampling strategy that approxi-
mately balances class distribution during training. Let nk

denote the number of images containing class k in the train-
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Figure 4: Class probabilities p(k) sorted from highest to
lowest for all 57 classes as N in Equation 3 is varied from
∞ (original distribution) to 1,000.

ing set with K classes. Randomly sampling from the train-
ing set results in the following probability for each class:

p(k) =
nk∑K
i=1 ni

(2)

Frequent classes with high image count nk thus have much
higher probability of being included in each mini-batch. To
balance the probabilities we introduce an additional param-
eter N and sample images according to:

p(k) =
min(nk, N)∑K
i=1 min(ni, N)

(3)

The effect of N is shown in Figure 4. The figure shows class
probabilities for all 57 classes sorted from highest to low-
est as N is varied from ∞ (original distribution) to 1,000.
We see a gradual effect where class distribution approaches
uniform distribution as N is decreased. Empirically, we
found that setting N in the [1,000, 10,000] range produced
better performance than using original or uniform distribu-
tion. Compared to the original class distribution, the Cas-
cade RCNN model improved in performance from 0.44 to
0.53 on the validation set, and from 0.058 to 0.065 on the
object detection leaderboard.

Learning Setup. We split the challenge dataset into
374,768 triplets to train the second stage spatio-semantic
and visual models, and 12,314 triplets to train the third stage
aggregation model. All models are validated on the remain-
ing 3,991 triplets. To evaluate model performance we use
the competition metric 1 which aims to capture both object
and relationship detection quality. In all experiments we use
the mAPrel component of the metric to validate all models.
We found it to correlate well with the overall metric and
much faster to compute.

1https://storage.googleapis.com/openimages/web/
evaluation.html

Rank Team Public LB Private LB
1 Layer6 AI 0.4638 0.4080
2 tito 0.4407 0.3881
3 Very Random team 0.4289 0.3785
4 [ods.ai] n01z3 0.3984 0.3659
5 Ode to the Goose 0.4016 0.3477

Table 2: Final team rankings on the public and private
leaderboards.

3.1. Implementation Details

Our pipeline consists of three stages that include object
detection, spatio-semantic and visual information extrac-
tion, and final aggregation. In this section we describe the
implementation details for each stage.

Object Detection. For the object detection stage, we
use an ensemble of Cascade RCNN [8] detection networks
with ResNeXt [11] and HRNet [10] backbones trained on
COCO and fine-tuned using our partial weight transfer ap-
proach. As described in Section 2.1, we are able to ini-
tialise 44 out of the 57 challenge classes by mapping them
onto the 80 COCO classes. The other 13 classes are ei-
ther initialized randomly or transferred from the backbone
that is fine-tuned for the challenge classes without partial
weight transfer. To combine multiple detection models we
use a weighted non-maximum suppression (NMS) approach
where bounding boxes from all detection models are com-
bined using a weighted average. The weights for each
model are selected according to performance on the valida-
tion set. This approach is similar to traditional NMS except
instead of choosing the most confident box we use weighted
average. Empirically, we found that weighted average pro-
vided a gain of around 2 points on the leaderboard.

For training of visual relationship models, we use ground
truth bounding boxes instead of predicted ones. We also ex-
periment with using the predicted boxes which we expect to
perform better. The rationale is that exposing the relation-
ship model to errors (e.g. shifted bounding boxes or mis-
labeled classes) made by object detection should enable it
to learn to correct them and make more robust predictions.
However, this does not perform well, and we presume that
this is because the relationship model is not able to suffi-
ciently correct errors made earlier in the pipeline.

Special “is” Relationship. We use a separate pipeline
for the “is” relationship since, unlike other relationships, it
doesn’t operate on pairs of objects. We leverage the ob-
ject detection model and modify the classification head to
predict over all object-attribute pairs that can form a valid
“is” relationship as separate classes. One concern here is
that there aren’t enough training examples to learn a reli-
able detection model for each pair. We address this problem
by again leveraging the partial weight transfer approach.

https://storage.googleapis.com/openimages/web/evaluation.html
https://storage.googleapis.com/openimages/web/evaluation.html


Relationship Spatio- Visual Avg. 3’rd StageSemantic
plays 0.49 0.58 0.55 0.59
hits 0.58 0.47 0.58 0.61
at 0.37 0.35 0.35 0.42
inside of 0.31 0.35 0.32 0.37
interacts with 0.42 0.42 0.41 0.44

Table 3: Validation APrel results for a subset of five relation-
ships. We show performance for spatio-semantic and visual
models, and two ways of combining them using weighted
average (Avg.) and 3’rd stage GBM model.

This time we transfer weights from one of our base de-
tection models and then fine-tune on the available “is” re-
lationship training data. For instance, both ”wooden” and
”plastic” piano classes get initialized with the piano clas-
sifier weights from our base detection model as well as its
backbone. Fine-tuning this way makes the model more ro-
bust to lack of training data and improves performance.

Spatio-Semantic and Visual Models. For spatio-
semantic model we use the tree-based GBM architecture
from the XGBoost library [3] due to its excellent perfor-
mance in our experiments. We train a separate model for
each relationship type by framing the problem into binary
classification. Specifically, we iterate over all ground truth
object bounding boxes and for each pair of objects that can
form the target relationship we check whether that pair is in
the ground truth training relationship set. If it is, we label
it as a positive sample, and if it is not as a negative sam-
ple. Note that negative samples are approximate here since
two objects can have a relationship that is not labelled in
the training set. However, the probability of that is small
and empirically we found that using this procedure with
negative samples produced good performance. We use the
same set of hyper-parameters for all relationships, the GBM
model is trained with the dart booster and max depth set
to 10. To prevent over-fitting, we further set subsample
and colsample bytree parameters to 0.2, as well as
gamma and lambda parameters to 2.0 and 1000 respec-
tively. Each model is trained for 5000 boosting iterations
with an early stopping check every 50 iterations.

For the visual model we use the ResNeXt backbone from
the object detection model that has been fine-tuned for the
challenge classes. We apply a 3-layer MLP on top of the
backbone with ReLU activations. The last layer outputs a
binary sigmoid prediction, and we train this model using
the same positive/negative samples as the spatio-semantic
model. For all relationships, we use the same batch size of
32 and run optimization for 35 epochs. To reduce overfit-
ting, we apply dropout with p = 0.2 to each MLP layer. We
use the Adam optimizer with cosine learning rate anneal-

Attribute APrel
Best Best Worst Worst
Class APrel Class APrel

transparent 0.40 bottle 0.75 table 0.13
wooden 0.60 guitar 0.95 bench 0.10
plastic 0.39 piano 0.68 bench 0.02
leather 0.46 sofa 0.68 suitcase 0.25
textile 0.62 sofa 0.80 suitcase 0.40

Table 4: Breakdown of the ”is” model results by attribute.
For each attribute we show validation APrel results together
with best and worst performing class.

ing and linear learning rate warmup. The maximum and the
minimum learning rates are 3e−4 and 5e−5 respectively.

Final Aggregation. In the last stage we combine predic-
tions from spatio-semantic and visual models together with
object features (see Section 2.2) to generate the final rela-
tionship prediction. We also use a tree-based GBM model
here, and train it with the XGBoost library. The parame-
ters for this model are the same as for the spatio-semantic
model, with the only difference that we use gbtree
booster instead of dart and lower tree depth to 8.

3.2. Results

The final team standings are shown in Table 2. Our
team “Layer6 AI” outperforms all other teams on both pub-
lic and private leaderboards beating the second place team
by over 5%. These results indicate that our multi-stage
pipeline is highly robust and produces leading performance
on this challenging task. We can also conclude that by ap-
plying transfer learning through our partial weight transfer
approach we can train highly accurate visual relationship
models with minimal hardware requirements.

Table 3 summarizes performance for each stage across
a sample of five relationships. We see that the spatio-
semantic model performs better on “at” and “hits” relation-
ships, while visual model outperforms on “plays” and “in-
side of”. This validates our hypothesis that both types of in-
formation are required to accurately detect all relationships.
We also see that combining these models through averag-
ing is highly sub-optimal and actually hurts performance
for four out of the five relationships. This observation mo-
tivates us to introduce a third stage to learn how to better
combine spatio-semantic and visual predictions. Results for
the third stage are shown on the right in Table 3, we see that
the third stage model is able to effectively learn when to use
each type of signal and further improve performance. We
are able to consistently improve performance over the best
individual model on all five relationships, with particularly
significant improvement on the “at” relationship where we
gain over 5 points in mAPrel or 11%.

We described in Section 3.1 that the “is” relationship is
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Figure 5: Qualitative results from our model. Green and purple bounding boxes are detected subject and object classes, and
purple box is the predicted relationship between them.

treated differently in our pipeline since instead of pairs it
operates on object-attribute combinations. Table 4 shows
the APrel performance of the “is” model for each of the five
attributes. For each attribute we also show best and worst
object class with corresponding APrel. From the table we
see that that the model performs well on attributes wooden
and textile, and does significantly worse on transparent and
plastic. As expected performance is highly dependent on
the number of training instances for each object-attribute
pair, as well as label ambiguity. For instance, many plas-
tic objects such as bottles are also labelled as transparent,
and the model has difficulty distinguishing between the two
properties. By analysing the best and worst class for each
attribute we can directly observe the effect of the training
set size. Textile sofas and suitcase appear much more fre-
quently in the training data (and arguably in real life) than
leather ones so performance on textile is better. Interest-
ingly, the model has difficulty recognizing attributes such as
transparent, wooden and plastic for common furniture items
such as tables and benches. After inspecting the data we ob-
served that furniture objects have a lot of variably, and often
appear in cluttered scenes with many occlusions making it
challenging to identify what they are made off.

Qualitative examples are shown in Figure 5. Figure 5a
shows a difficult scene where two soccer players are trying
to get the ball but only one of them hits it. Our model is
able to correctly identify which player hit the ball which in-
dicates a degree of robustness to spatially complex scenes.
Figure 5b shows a related failure case where player hits the
ball during a game of water polo. The model is able to cor-
rectly capture that relationships, but also identifies another
player as hitting the same ball which is incorrect. Possi-
ble reasons for this failure can be partial occlusion between
the two players, and position of the incorrectly identified
player relative to the ball. Position in particular is difficult

to capture accurately here, the two bounding boxes are close
together in 2D but the player is actually far from the ball in
3D. 3D spatial information is difficult to capture with a sin-
gle image and we hypothesise that performance can be im-
proved if another view or depth information is added as in-
put. Finally, Figure 5c shows a more cluttered scene where
multiple musicians are playing various instruments such as
flute and piano. Here, we see that our model is able to cor-
rectly identify all relationships even though musicians are
in close proximity to each other.

4. Conclusion
We present our winning solution to the Open Im-

ages 2019 Visual Relationship challenge. We propose a
novel partial weight transfer approach to effectively trans-
fer learned models between datasets and accelerate training.
Our pipeline consists of object detection followed by spatio-
semantic and visual feature extraction, and a final aggrega-
tion phase where all information is combined to generate
relationship prediction. Partial weight transfer enables us to
train the entire architecture in under two days on a single
GPU making it accessible to most researchers and practi-
tioners. In addition to high efficiency, we also achieve top
performance and beat over 200 teams to place first in the
competition outperforming the second place team by over
5%. In the future work we aim to focus on fusing the three
stages into a joint architecture that can be trained end-to-
end. We hypothesize that end-to-end training can improve
the flow of information and lead to better performance.
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