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Face routing is a simple method for routing in wireless ad-hoc networks. It only uses

location information about nodes to do routing and it provably guarantees message de-

livery in static connected plane graphs. However, a static connected plane graph is often

difficult to obtain in a real wireless network.

This thesis extends face routing to more realistic models of wireless ad-hoc networks.

We present a new version of face routing that generalizes and simplifies previous face

routing protocols and develop techniques to apply face routing directly on general, non-

planar network graphs. We also develop techniques for face routing to deal with changes

to the graph that occur during routing. Using these techniques, we create a collection of

face routing protocols for a series of increasingly more general graph models and prove

the correctness of these protocols.

ii



Acknowledgements

I am deeply indebted to Faith Ellen and Peter Marbach, who I had the privilege to

have as my supervisors throughout my graduate study. This thesis could not have been

accomplished without their excellent guidance. They have given me invaluable advice

on my study and on learning the skills to do good research. I also greatly appreciate

their patience and support. Especially, Faith Ellen has put an incredible amount of time

and effort helping me with the writing of this thesis and proofreading the algorithms and

their proofs of correctness.

I would like to thank Eyal de Lara and Avner Magen for being members of my

supervisory committee and their discussion and advice about my research.

I would also like to thank my fellow students, especially Stratis Ioannidis and Jingrui

Zhang, for their friendship and encouragement.

Finally, I especially thank my wife. She has made many sacrifices to support my

study and always been understanding and encouraging.

iii



Contents

List of Algorithms and Figures v

Glossary of Notation ix

1 Introduction 1

1.1 Routing in Wireless Ad-hoc Networks . . . . . . . . . . . . . . . . . . . . 2

1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of Our Research and Contributions . . . . . . . . . . . . . . . . . 7

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 10

2.1 Restricted Directional Flooding . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Face Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 A New Version of Face Routing 19

4 Simulating Face Routing On Virtual Graphs 23

5 Routing in Unit Disk Graphs 29

5.1 Geometric Properties of Unit Disk Graphs . . . . . . . . . . . . . . . . . 29

5.2 Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info . . . . . . . . . . . 33

5.3 Virtual-Face-Traversal-For-UDG-With-One-Hop-Info . . . . . . . . . . . 39

iv



6 Routing in Quasi Unit Disk Graphs 54

6.1 Geometric Properties of Quasi Unit Disk Graphs . . . . . . . . . . . . . . 54

6.2 Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info . . . . . . . . . 56

6.3 Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info . . . . . . . . . . 61

7 Routing in Edge Dynamic Quasi Unit Disk Graphs 69

7.1 Virtual-Face-Traversal-With-Tether . . . . . . . . . . . . . . . . . . . . . 70

7.2 Conditions for Guaranteeing Message Delivery . . . . . . . . . . . . . . . 77

7.3 Proof of Correctness of Virtual-Face-Traversal-With-Tether . . . . . . . . 77

8 Some Results on Restricted Mobile Quasi Unit Disk Graphs 102

8.1 Routing in a Restricted Mobile Quasi Unit Disk Graph . . . . . . . . . . 102

8.2 Towards More General Mobile Quasi Unit Disk Graphs . . . . . . . . . . 105

8.2.1 Problems caused by node movements . . . . . . . . . . . . . . . . 105

8.2.2 Limiting the speed of nodes . . . . . . . . . . . . . . . . . . . . . 107

9 Conclusions and Future Work 116

Bibliography 120

Index 129

v



List of Algorithms and Figures

1.1 A quasi unit disk graph that does not have a connected spanning plane

subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 An example of the path followed by a packet using a face routing protocol 14

2.2 Examples of routing failure if a face routing algorithm only uses nodes as

new starting points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Different paths followed by a packet travelling from node s to node d . . 20

3.2 An example where the original face routing fails and the new version succeeds 21

4.1 Computing the next virtual edge . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Illustration of the input and output parameters of Algorithm EPND . . . 26

4.3 Algorithm EPND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 The lens with chord (u, v) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Algorithm INIT-UDG2HOP . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info . . . . . 38

5.7 Algorithm INIT-UDG1HOP . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 Algorithm LCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9 Example of the first edge when more than one edge cross (u, v) at β . . . 46

vi



5.10 Algorithm LFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.11 The direction of the first edge when p is an interior point on edge (α, β) . 47

5.12 Stage transition of the computation in Virtual-Face-Traversal-For-UDG-

With-One-Hop-Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.13 Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info . . . . . 50

5.14 Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (con’t) . 51

5.15 Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (con’t) . 52

6.1 Proof of Lemma 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Algorithm INIT-QUDG3HOP . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Algorithm Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info . . . 60

6.4 Algorithm INIT-QUDG2HOP . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Algorithm Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info . . . . 66

7.1 An example of a counterclockwise cycle during the traversal . . . . . . . 71

7.2 Initialization of packet.destination . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Algorithm INIT-EDQUDG . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Counterclockwise cycles formed by edge (w, x) with the tether . . . . . . 74

7.5 Algorithm Virtual-Face-Traversal-With-Tether . . . . . . . . . . . . . . . 75

7.6 Algorithm Virtual-Face-Traversal-With-Tether (Con’t) . . . . . . . . . . 76

7.7 Base case of the proof of Lemma 7.5 . . . . . . . . . . . . . . . . . . . . 80

7.8 Edge (β(k), v) is outside F ′ . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.9 Induction step of the proof of Lemma 7.5 . . . . . . . . . . . . . . . . . . 82

7.10 Proof of Proposition 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.11 First case of the proof of Proposition 7.10 . . . . . . . . . . . . . . . . . 87

7.12 Second case of the proof of Proposition 7.10 . . . . . . . . . . . . . . . . 88

7.13 An example where F ′ is an interior virtual face of G′ . . . . . . . . . . . 89

7.14 An example where F ′ is the outer virtual face of G′ . . . . . . . . . . . . 90

vii



7.15 Example for the proof of Proposition 7.11 where k = 2 . . . . . . . . . . 91

7.16 Example for the proof of Proposition 7.11 where k = 3 . . . . . . . . . . 93

7.17 Example for the proof of Proposition 7.11 where k = 4 . . . . . . . . . . 94

7.18 Example for the proof of Proposition 7.14 . . . . . . . . . . . . . . . . . 97

8.1 Values of δ and ε at which message delivery can be guaranteed . . . . . . 104

8.2 Example when Virtual-Face-Traversal-With-Tether cannot make progress 106

8.3 Proof of Lemma 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.4 Changes of two edges (a, b) and (v, w) . . . . . . . . . . . . . . . . . . . . 110

8.5 A special case where the starting point p is node v . . . . . . . . . . . . . 111

8.6 A general case of the starting point p and edge (u, v) . . . . . . . . . . . 112

8.7 A special case where |pv| = 2µ = 1/2 and |vd| = 1√
2

+ ξ, where ξ << 1 . 112

viii



Glossary of Notation

UDG Unit Disk Graph

QUDG Quasi Unit Disk Graph

EDQUDG Edge Dynamic Quasi Unit Disk Graph

MQUDG Mobile Quasi Unit Disk Graph

6 xuy the clockwise angle around u from edge (u, x) to edge (u, y)

|uv| the Euclidean distance between points u and v

u, v, w real nodes

α, β, γ virtual or real nodes

(α, β) the directed edge from node α to node β

s the source node

d the destination node

pq the straight line segment between points p and q

ε distance within which nodes are neighbors in quasi unit disk graphs

F (π) a function that maps a virtual path π to a sequence of real nodes

ix



Chapter 1

Introduction

A wireless ad-hoc network consists of a collection of nodes that communicate with each

other through wireless links without a pre-established networking infrastructure. It orig-

inated from battlefield communication applications, where infrastructured networks are

often impossible. Due to its flexibility in deployment, there are many potential appli-

cations of a wireless ad-hoc network. For example, it may be used as a communication

network for a rescue-team in an emergency caused by disasters, such as earthquakes or

floods, where fixed infrastructures may have been damaged. It may also provide a com-

munication system for pedestrians or vehicles in a city. Another example of a wireless

ad-hoc network is a rooftop network [9, 12], which consists of a number of wireless nodes

spread over an area to provide local networking service and access to wired networks,

such as the Internet, for residents in the neighborhood. Another application of wireless

ad-hoc networks is a sensor network, which consists of a large number of small computing

devices deployed in a region that collect data and may send the information to a central

server.

1



Chapter 1. Introduction 2

1.1 Routing in Wireless Ad-hoc Networks

In a data communication network, if two nodes are not connected directly by a commu-

nication link, their messages to each other need to be forwarded by intermediate nodes.

Finding a path between two nodes on which to send messages in data communication

networks is a fundamental problem, called routing . In a traditional computer network,

there are nodes dedicated to the routing task, called routers . Applications on hosts com-

municate with servers and messages are forwarded by routers to their destinations. In

contrast to traditional computer networks, wireless ad-hoc networks do not distinguish

between hosts, servers, and routers. Wireless ad-hoc networks are also different from

wireless networks with base stations, such as cellular phone systems, in which messages

are relayed by the base stations. In wireless ad-hoc networks, nodes are not only ap-

plication hosts, but also function as routers to forward messages for other nodes that

are not within direct wireless transmission range of each other. The participating nodes

form a self-organized network without any centralized administration or support [25].

Therefore, wireless ad-hoc networks are purely distributed systems.

The characteristics of wireless ad-hoc networks that are different from traditional net-

works pose two specific challenges in routing. First, since there are no dedicated routers

nor persistent routing databases, wireless ad-hoc networks require fully distributed rout-

ing protocols. Second, the topology of a wireless ad-hoc network can change frequently

and unpredictably. A routing protocol for a wireless ad-hoc network must be well adapted

to the constant changes of topology. These characteristics make routing in wireless ad-hoc

networks an interesting and challenging problem.

A large variety of ad-hoc routing protocols have been proposed, ranging from modifi-

cations and optimizations of traditional routing approaches for static networks to inno-

vative methods for ad-hoc networks that utilize geographic location information about

nodes. One approach to ad-hoc routing is to modify traditional routing algorithms by

maintaining up-to-date topology information [52, 10, 49]. This is done by periodically
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broadcasting updates to routing information throughout the network. However, this

involves large communication overhead. To avoid periodically exchanging routing infor-

mation, another approach is to establish a route only when it is needed by flooding a

route request throughout the network [29, 53, 51, 23, 20]. Both approaches are efficient

only in small and moderate sized networks [55, 8, 28, 11, 50, 60, 48].

Location-based routing, also known as geometric routing or geographic routing, has

been proposed to address the scalability issue. Instead of using topological information,

location-based routing protocols use geographical location information about nodes to

route packets. These protocols assume that nodes know their own geographic locations

(for example, from a Global Positioning System [30]) and the source node knows the

location of the destination node.

A naive way to use location information is to broadcast route query messages within

a restricted area to construct a route to the destination [6, 35]. More efficient location-

based routing protocols transmit data packets directly without explicitly constructing a

route in advance [14, 47, 36, 7, 31, 37]. In these protocols, nodes do not keep routing

information, except for the locations of their neighbors, and a packet is not duplicated

during routing. When a node receives a packet, the simplest way to route the packet is

to forward it to the neighbor that is closest to the destination [14, 47, 36]. This is called

greedy routing . Compared to other protocols, greedy routing has extremely low routing

overhead and scales well to large networks. However, greedy routing may fail to deliver a

packet, because the packet may reach a node whose neighbors are all farther away from

the destination [36, 31].

A technique called face routing provably guarantees packet delivery in static connected

plane graphs [36, 7, 31]. Face routing is applied on a plane graph, and the packet is for-

warded along the boundaries of the faces that are intersected by the line segment between

the source node and the destination node. The face routing protocols in the literature

[7, 31, 38, 37] have the following two constraints: they need a separately constructed
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spanning plane subgraph of the network for routing, and they assume that the plane

subgraph remains static during the routing process. Extracting a connected spanning

plane subgraph in a distributed manner may be difficult in real networks. Experimen-

tal results [33, 57] indicate that most existing algorithms have problems in real wireless

networks due to radio range irregularities and imprecise location information. Problems

with the resulting routing graph can lead to failure of face routing protocols. Moreover,

experiments show that links in wireless ad-hoc networks, such as rooftop networks, are

often unstable even when nodes are stationary [9, 1]. As a result, these protocols may

not be practical in real wireless ad-hoc networks.

Other routing protocols that guarantee message delivery in static networks have been

obtained by combining face routing with greedy routing [7, 31, 40, 37]. The protocols

operate in the greedy routing mode until the packet reaches a node where greedy routing

fails to proceed. Then, the protocols switch to the face routing mode as a recovery

mechanism and switch back to greedy mode when possible.

This thesis extends face routing to more general and more realistic models of wireless

ad-hoc networks with the goal of developing geometric routing protocols that guarantee

message delivery in those models. We consider a series of graph models with increasing

generality, which are defined in Section 1.2. We develop techniques that generalize and

extend face routing, and design a collection of provably correct face routing protocols for

these models.

1.2 Models

All graphs described in this thesis are considered to be drawings in the plane: vertices are

represented by distinct points in the plane, and an edge is represented by the straight line

segment between its endpoints. If no edges intersect except at their common endpoints,

we say it is a plane graph. The edges of a plane graph partition the plane into disjoint
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regions called faces [62]. A graph H = (V ′, E ′) is a subgraph of graph G = (V,E) if

V ′ ⊆ V , E ′ ⊆ E, and each vertex in V ′ is placed at the same point in the plane as in G.

If V ′ = V , then H is a spanning subgraph of G.

We assume that all nodes in a wireless ad-hoc network are located in a plane. For

networks with stationary nodes, we assume that the nodes are in general position, i.e.,

no two nodes lie on the same point in the plane, and no three nodes lie on the same

straight line. A network graph that represents a wireless ad-hoc network is drawn in the

natural way: a vertex representing a network node is drawn at the point that represents

the location of the node in the plane. For convenience, when we refer to a node or vertex,

we do not distinguish between the network node, the vertex in the graph that represents

the network node, and the point in the plane that represents the vertex. Similarly, when

we refer to a link or edge, we do not distinguish between the wireless link, the edge in

the graph that represents the link, and the line segment in the plane that represents the

edge.

A simple graph model for wireless ad-hoc networks is the unit disk graph (UDG)

model, in which each pair of vertices are connected directly by an edge if and only if

they are at most distance 1 apart. A unit disk graph models a wireless ad-hoc network

in which nodes have the same circular transmission range. Nodes are considered to be

stationary during the routing process, so a unit disk graph is a static graph representing

a snapshot of the network at a point in time. A connected unit disk graph contains

a connected spanning plane subgraph, which can be used as the routing graph for face

routing. Although the unit disk graph model is widely employed because of its simplicity,

it is unrealistic since nodes in a wireless ad-hoc network often do not have circular

transmission ranges due to obstacles.

The first extension we consider is the quasi unit disk graph (QUDG) model [5, 39],

which allows the transmission region of nodes to be non-circular. In a quasi unit disk
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graph, there is a constant ε, where 0 ≤ ε ≤ 1, such that nodes at most distance ε apart

are connected by an edge, nodes more than distance 1 apart are not connected by an

edge, and nodes with distance in between may or may not be connected by an edge. It is

a static graph model where no change of the network graph is allowed during the routing

process. If ε < 1, a connected quasi unit disk graph may not have a connected spanning

plane subgraph. For example, see Figure 1.1. Note that any graph can be viewed as a

quasi unit disk graph with ε = 0 by taking the maximum length of any edge to be 1.

PSfrag replacements

u v

w

x

Figure 1.1: A quasi unit disk graph that does not have a connected spanning plane sub-

graph

Next, we extend our study to non-static graph models. An edge dynamic graph is a

graph whose nodes remain stationary, but whose edges may change over time. An edge

dynamic quasi unit disk graph (EDQUDG) is a quasi unit disk graph at all points in

time: nodes that are at most distance ε apart are always connected by an edge, nodes

that are more than distance 1 apart are never connected by an edge. The difference

between an EDQUDG and a QUDG is that, in an EDQUDG, an edge whose length is

between ε and 1 may repeatedly change between being active and inactive at arbitrary

times. Edge dynamic quasi unit disk graphs represent networks in which the wireless

connections between the nodes that are more than distance ε apart are unstable, or

there exist moving obstacles that can interfere with connections between nodes during

the routing process.
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Finally, we extend the network graph model to graphs consisting of mobile nodes. A

mobile graph is a graph each of whose vertices may move along a continuous trajectory,

representing the movement of a mobile node in the network. A mobile quasi unit disk

graph (MQUDG) is a mobile graph that is a quasi unit disk graph at all times. When

two nodes are within distance ε of one another, they are connected by an edge. When

their distance from one another is greater than 1, they are disconnected. When their

distance from one another is greater than ε, but less than or equal to 1, they may or may

not be connected.

The transmission time of a packet from a node to a neighbor is assumed to be bounded

above by a constant. A transmission is successful as long as the connection exists for

this length of time from the beginning of the transmission. Thus, in a static graph, no

transmission failures occur. In edge dynamic and mobile graphs, it is possible that an

edge becomes inactive when a packet is being transmitted along the link. We assume

that such a transmission failure can be detected by the sender and, if this happens, it

re-routes the packet.

1.3 Outline of Our Research and Contributions

The main contributions of our research are a better understanding of the capability and

limitations of face routing and a collection of geometric routing protocols that guarantee

message delivery in more realistic models of wireless ad-hoc networks. In the following,

we give an outline of our research and contributions.

First, we present a new version of face routing that uses a more general rule to

decide the face to be traversed. In static graphs, this version of face routing is similar

to some protocols that combine greedy routing with face routing. Our new protocol is

conceptually simpler. Moreover, in non-static graphs, our new protocol can be used to

extend previous face routing protocols to obtain more general conditions under which



Chapter 1. Introduction 8

message delivery is guaranteed.

Then we study techniques to directly apply face routing on general non-planar network

graphs, without extracting a plane subgraph. A (virtual) plane graph can be obtained

from any graph by replacing each edge crossing with a virtual node. We show how

to simulate face routing on the resulting plane graph without requiring real nodes to

maintain extra information about virtual nodes. This extends face routing to more

general graphs and simplifies geometric routing protocols that use face routing.

We have developed a collection of provably correct protocols that simulate face routing

on unit disk graphs and quasi unit disk graphs with ε ≥ 1√
2

using different assumptions

about how much information is available at each node. The protocols that are based on

more knowledge of the local neighborhood are straightforward, but those that require

less information at each node are more complicated.

Next, we extend face routing to edge dynamic quasi unit disk graphs. In our earlier

work, we presented a protocol for edge dynamic graphs, where we assumed that the

graph is always a plane graph [21, 22]. However, edge dynamic quasi unit disk graphs

are not necessarily plane graphs. Therefore, that protocol may not work for general

edge dynamic graphs. We devise another protocol that combines our techniques for edge

dynamic plane graphs with our techniques for applying face routing on quasi unit disk

graphs. We prove that, under general conditions, this protocol works correctly in edge

dynamic quasi unit disk graphs with ε ≥ 1√
2
.

Finally, we study face routing in mobile quasi unit disk graphs. It is challenging to

do face routing in such graphs, because complicated changes to the network graph may

happen during routing. We consider a restricted family of mobile quasi unit disk graphs

in which each node may move only within a small circular region. We show that our

protocol for edge dynamic quasi unit disk graphs can be applied to do routing in such

graphs. We also consider a family of mobile quasi unit disk graphs in which the speed of

the movement of nodes is limited. We present a variant of our protocol for routing to a
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stationary destination node and give some evidence for its correctness.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give a survey of location-

based routing protocols in the literature, in particular, the original face routing protocols

and a variety of protocols that use face routing. In Chapter 3, we describe our new version

of face routing that uses a more general face switching rule. In Chapter 4, we describe how

to apply face routing on general non-planar network graphs directly. Then, in Chapters

5 to 7, we discuss the challenges of doing face routing in unit disk graphs, quasi unit

disk graphs, and edge dynamic quasi unit disk graphs, and give routing protocols for

each. Chapter 8 describes our results on some restricted versions of mobile quasi unit

disk graphs. Finally, we highlight the main results in this thesis and discuss directions

for future work in Chapter 9.



Chapter 2

Related Work

Location-based routing is done using physical location information about nodes. This

is a very different approach than traditional routing, in which nodes need to maintain

routing information [11, 42, 60]. Instead, location-based routing uses information about

the geographic location of the neighbors of the current node to direct a packet to its

destination.

In location-based routing protocols, it is assumed that nodes know their own locations

and the source node knows the location of the destination node. A node equipped with

a Global Positioning System (GPS) receiver can obtain its own geographic coordinates

[30]. When GPS support is unavailable, there are other localization techniques that

mobile nodes can use [24, 54, 56, 58]. In order to obtain the location of the destination

node, a location service is needed from which a node can query about the locations

of other nodes. Most location-based routing protocols assume that a location service

exists as an external resource. Indeed, in the literature, location service has often been

considered as an independent research topic. For research in this area, we refer the reader

to [6, 19, 59, 32, 42].

According to how the location information is used, location-based routing protocols

can be divided into three categories, restricted directional flooding, greedy routing, and

10
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face routing. In the next two sections, we briefly describe protocols in the first two

categories. Then, we describe face routing in more detail and discuss the variants of it

that appear in the literature.

2.1 Restricted Directional Flooding

Restricted directional flooding protocols, including Location-Aided Routing (LAR) [35]

and the Distance Routing Effect Algorithm for Mobility (DREAM) [6], are designed for

mobile ad-hoc networks where the up-to-date location of the destination node is unknown.

They use flooding to search for a path to the destination, but utilize location information

so that packet broadcasts are confined to a subset of nodes instead of the entire network.

LAR assumes that the source has some knowledge about the movement of the desti-

nation node, for instance, its average or maximum speed. When the source node needs

to send a message, it calculates a region, called the expected zone, in which it expects

the destination node to be currently located. The size and shape of the expected zone

depends on what information the source node knows about the destination. For exam-

ple, if the source node knows the location of the destination node at some time in the

past and its average speed, the expected zone is the circular region centered at that

location with radius the distance it may have moved. If the source node does not know

a previous location of the destination node, the entire region that may potentially be

occupied by the ad-hoc network is the expected zone. Then, a request zone is determined

that includes both the source node and the expected zone. The request zone is used to

restrict the region of flooding in route discovery: only the nodes within the request zone

broadcast the route request packet to their neighbors. Therefore, choosing the size of the

request zone involves a trade-off between the routing communication overhead and the

possibility that a path is found in it.

The DREAM protocol is used for sending data packets directly without route discov-
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ery. Each node records the locations of all other nodes in the network and disseminates

its current location to all other nodes with a frequency determined by its distances to

them and its mobility rate. More specifically, the farther apart two nodes are, the less

frequently they update their locations to each other; the faster a node moves, the more

frequently it broadcasts its location. This approach reduces location update overhead

without compromising the routing accuracy. When a node wants to send a message to

another node, it obtains the direction of that node from its location information, and

sends the message to all its neighbors in that direction. Each neighbor relays the message

in the same way until the destination node is reached.

2.2 Greedy Routing

Greedy routing protocols use location information in a similar way, but they apply a

greedy heuristic in path selection so that packet delivery is through point-to-point com-

munication rather than through broadcast. A node forwards the packet to the neighbor

that is closest to the destination in terms of distance [47] or direction [36], which is de-

fined as the angle between the line segment from the node to the destination and the

edge to a neighbor. Greedy routing is very simple and efficient since nodes do not need

to maintain routing information, and packets are forwarded immediately without being

duplicated. Compared to other protocols, greedy routing has extremely low routing over-

head and it scales well to large wireless ad-hoc networks. However, greedy routing does

not guarantee that a packet reaches its destination. If the distance to the destination is

used to choose the next edge to send a packet, a local minimum may be reached. Even

if the direction is used to choose the next edge, a loop may be formed [36].
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2.3 Face Routing

Face routing, proposed in [36], was the first geometric routing algorithm that guaranteed

message delivery without flooding. Several variants of face routing protocols [7, 31, 38,

40, 37, 41] were subsequently proposed. Face routing is applied on a plane subgraph of the

network graph. A plane graph divides the plane into faces. The line segment between

the source node and the destination node intersects some faces. In face routing, the

packet is forwarded along the boundaries of these faces. A specific face routing protocol

provides a set of rules for each node to decide where to send a packet using only the local

information about its neighbors and the information in the packet header.

A typical face routing protocol works as follows [7]. When face routing starts, the

packet is forwarded along the boundary of the first face intersected by the line segment

from the starting point to the destination. The first edge of the traversal of a face is

the first edge in clockwise order around the starting point from the line segment to the

destination. After the traversal of an edge (u, v), the next edge of the face traversal is

the first edge after (v, u) in clockwise order around v. In this way, the packet traverses

the edges on the boundary of the face in the counterclockwise direction. The traversal

in this way is called using the right-hand rule. When the traversal reaches an edge that

intersects the line segment from the starting point to the destination at a point closer

to the destination than the starting point is, that point becomes the new starting point

and the traversal switches to the next face. This procedure repeats until the destination

is reached.

Figure 2.1 shows an example of the route computed by such a face routing protocol.

In this example, a packet is sent from node s to node d. It first travels along the boundary

of face F1, until it reaches p1, the next intersection point of the boundary of F1 and the

line segment sd, where the traversal is switched to the next face, F3. Subsequently, the

packet travels along the boundaries of faces F3 and F5.

Although the basic idea of face routing is simple, some variants of face routing can fail



Chapter 2. Related Work 14PSfrag replacements

s d
p1 p2

F1

F2

F3

F4

F5

packet route

Figure 2.1: An example of the path followed by a packet using a face routing protocol

to deliver a packet in certain plane graphs [16]. For example, if a face traversal algorithm

only uses nodes closer to the destination than the starting node as new starting points, it

may not find a new starting point on some face, such as face F1 in Figure 2.2 (a). In this

example, node s is the source node, and node d is the destination node. The other two

nodes v1 and v2 on the boundary of F1 are farther away from node d than s. Another

case when face routing can fail is if, when an edge intersecting the line segment between

the starting point and the destination is found, a face traversal algorithm always uses the

current node, instead of the intersection point, as the new starting point. In this case, a

packet may loop along a sequence of faces without ever reaching the destination. This is

illustrated in the example in Figure 2.2 (b), where this algorithm will forward the packet

along (s1, s2), (s2, s3), and (s3, s1).

The Gabriel Graph [17], the Relative Neighborhood Graph [61], and several special

subgraphs of the Delaunay triangulation [18, 43, 44, 45] are known to be plane graphs

of a set of points in the plane. The intersection of any of them with a connected unit

disk graph is a connected plane subgraph and can be extracted in a distributed manner,
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Figure 2.2: Examples of routing failure if a face routing algorithm only uses nodes as

new starting points

i.e., using only local information about neighbors. These plane subgraphs can be used as

routing graphs for face routing. For example, it is easy for a node in a unit disk graph to

check whether each incident edge is in the Gabriel Graph of the same set of nodes, using

only location information about its neighbors. If the unit disk graph is connected, the

subgraph of the unit disk graph consisting of those edges is a connected plane subgraph.

It is known that face routing guarantees the delivery of a packet in static connected

plane graphs [7, 21]. It has been combined with a greedy routing approach to make the

overall routing protocol more efficient. One such protocol is Greedy Perimeter Stateless

Routing (GPSR) [31]. The main routing strategy in GPSR is greedy routing. A node

sends a packet to one of its neighbors in the network that is closest to the destination,

provided that neighbor is closer to the destination than it is. However, when a node

is closer to the destination than any of its neighbors, face routing is used as a recovery

mechanism.

Like the GPSR protocol, the GOAFR+ protocol [37] is also a combination of greedy
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routing and face routing. GOAFR+ uses much more complicated techniques to combine

face routing with greedy routing so that the length of the route found by this protocol is

always within a constant factor of the square of the length of the shortest path. Specifi-

cally, it defines an area that may be adaptively resized during the routing process. When

the protocol is operating in face routing mode, the traversal is confined to this area. If

the traversal along the boundary of the face in the counterclockwise direction will go out

of this area, it turns around and traverses the face in the opposite direction. If traversing

in both directions reaches the boundary of the confined area, this area is expanded. It

also uses an involved set of rules to determine when the protocol should switch back to

greedy mode from face traversal mode. It is shown in [38] that, for any geometric routing

protocol, the length of the route found by the protocol is, in the worst case, at least a

constant times the square of the length of the shortest path between the source and the

destination. Thus, GOAFR+ is asymptotically optimal with respect to the length of the

route. Their simulation results show that GOAFR+ is also efficient on random graphs.

There have been a few papers on geometric routing in quasi unit disk graphs. For

connected quasi unit disk graphs with ε ≥ 1√
2
, Barrière et al. [5] propose a technique to

construct a super-graph by adding extra edges to the network graph, which correspond to

paths in the network graph. Their technique involves nodes exchanging information with

neighbors so that they set up extra edges when needed. The extra edges guarantee that

a connected spanning plane subgraph of the super-graph exists. Although the resulting

super-graph is not a unit disk graph, the algorithm for extracting the intersection of the

Gabriel Graph and a unit disk graph can be applied to extract a plane subgraph of the

super-graph. They prove that if the network graph is connected, the resulting subgraph

of the super-graph is a connected spanning plane graph of the network nodes.

Face routing can be performed on the resulting subgraph. Each node maintains a

routing table for its incident extra edges, so that a message that is supposed to be routed

along an extra edge is forwarded along the corresponding path in the network to the other
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endpoint of the extra edge. For static quasi unit disk graphs, this approach may result in

long routes. It is unclear whether this approach can be extended to edge dynamic quasi

unit disk graphs. When there is a change in the network, the nodes whose neighborhood

is changed need to re-compute the super-graph and the routing subgraph. This may

have a ripple effect through the network: the changes at these nodes may cause changes

to the extra edges at their neighbors, which in turn can affect more nodes. If there are

frequent changes in the network during the routing process, their routing protocol may

fail to deliver the packet.

For quasi unit disk graphs with 0 ≤ ε ≤ 1, Kuhn et al. [39] give a distributed algorithm

to construct a sparse spanner of the network graph. Then they apply Barrière et al.’s

technique to obtain a sparse spanning plane graph for routing in quasi unit disk graphs

with ε ≥ 1√
2
.

Lillis et al. [46] consider quasi unit disk graphs with ε ≥ 1√
2
. They use the idea of

adding virtual nodes (where edges cross) on a sparse spanning subgraph of the network

graph to obtain a plane graph for routing. This idea is also briefly mentioned by Kuhn et

al. [39]. One of the endpoints of the edges crossing at each virtual node serves as a proxy

for that virtual node, sending and receiving messages on its behalf, and maintaining its

routing table. However, they do not explain how proxies are chosen, nor do they describe

the detailed behavior of the proxies. Their approach requires extra storage space at nodes

for keeping routing tables. To keep this storage expense small, the sparse subgraph is

extracted from the network graph to limit the number of virtual nodes managed by each

real node. In addition, they still assume the network graph to be static for routing.

Barrière et al. [5] showed that, for any constant k, there exists a quasi unit disk

graph with ε < 1√
2

that contains two crossing edges e and e′, and any path connecting

one endpoint of e and one endpoint of e′ has length at least k hops. This means that

the edge crossing cannot be detected at those endpoints with (k − 1)-hop neighborhood

information. Thus, a local routing algorithm based on face routing (without flooding)
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may miss a crossing edge and fail to deliver a packet in a quasi unit disk graph with

ε < 1√
2
.

The face routing protocols discussed above assume that the routing process is done

instantaneously so that the protocols are executed on a static graph. This assumption is

relaxed in my M.Sc. thesis [21] and my paper [22], where two new face routing protocols

are proposed and proved to be correct in edge dynamic graphs that are always plane

graphs. The Timestamp-Traversal protocol stores a time stamp in the packet header

to record the departure time of the packet from its starting point. Links that become

available after this time are ignored. The Tethered-Traversal protocol fully exploits all

available edges, and takes advantage of new edges. To achieve this, it uses information

about the path followed by a packet, carried in the packet header, to determine whether

the next edge along the boundary of the current face should be traversed or not. As in the

original face routing protocols, nodes do not keep any history information about links or

about packets that they have received. Both protocols guarantee message delivery if, dur-

ing the traversal of each face, the graph contains a stable connected spanning subgraph.

Since edge dynamic quasi unit disk graphs are not necessarily plane graphs, Timestamp-

Traversal and Tethered-Traversal do not necessarily guarantee message delivery in edge

dynamic quasi unit disk graphs.

For mobile wireless ad-hoc networks, Ioannidou [27] addressed the routing problem in

a different framework. She presented a simple model that can be simulated in a mobile

ad-hoc network, given explicit bounds on the speed of nodes. The connections in this

simplified model remain relatively stable for sufficiently long so that face routing can be

applied to route a packet along the boundary of a stable face in this model.



Chapter 3

A New Version of Face Routing

In this chapter, we present a new version of face routing for that guarantees message

delivery while naturally incorporating a greedy approach. Although we devised it to

apply face routing to mobile graphs, it generalizes and is better than the original version

described in Chapter 2. The main difference between our new version of face routing

and the classical face routing protocols is the rule to choose the new starting point

[7, 31, 37, 16]. Our rule for selecting a new starting point is more general. In our

protocol, the new starting point can be, but is not necessarily, an intersection point on

the line from the source to the destination.

Specifically, in our new version, starting from the starting point of a face, the packet

is forwarded along the boundary of the face intersected by the line segment from the

starting point to the destination, until it finds a point on the face that is closer to the

destination than the starting point is. Then this point becomes the new starting point

and the packet starts to traverse the face intersected by the line segment from the new

starting point to the destination. This procedure repeats until the packet reaches the

destination.

Figure 3.1 shows an example of the path followed by a packet using our new protocol.

It is the same graph as in Figure 2.1 on page 14 where we explained the original version

19
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of face routing. In this example, from node s to node d, the packet traverses faces F1, F2,

F4, and F5 successively. Our traversal does not necessarily switch to another face when

a new starting point is found: In our example, each node visited on face F5 is closer to

the destination than its predecessor. For comparison, notice that previous face routing

protocols would switch from face F1 to F3 at node x, when it sees edge (x, y), which

intersects sd, but our new protocol switches from F1 to F2 at node u.
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Figure 3.1: Different paths followed by a packet travelling from node s to node d

A new starting point can be any point on the boundary of the current face that is

closer to the destination than the current starting point is. In our version of face routing,

once we see an edge that contains such a point, we choose the point on that edge closest

to the destination as the new starting point. In static graphs, such a point can always be

found, as long as the source and the destination are in the same connected component

of the graph. Note that, as in the original face routing protocols, a new starting point is

not necessarily at a node.

In static graphs, the behavior of our new protocol is similar to some protocols that
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combine greedy routing with face routing, such as GPSR [31]. During the traversal of

a face, if the packet reaches a node, say, node u, that is closer to the destination than

the starting point is, GPSR switches to greedy mode, whereas our protocol switches to

the next face. Now, if node u does not have a neighbor closer to the destination than

itself, GPSR will switch back to face routing and start to traverse the same face as our

protocol. Otherwise, GPSR forwards the packet to the neighbor of u that is closest to the

destination. This node may or may not be the same node to which our protocol forwards

the packet. In the example in Figure 3.1, GPSR forwards the packet from node u to node

w, but our protocol forwards the packet to node v. Both protocols subsequently forward

the packet to node z, and the packet follows the same path in both protocols thereafter.

A benefit of our protocol is that it unifies a greedy heuristic into face routing so that it

is not necessary to switch between modes.

In non-static graphs, there are situations when the original face routing protocols fail,

but our new protocol succeeds. One example is shown in Figure 3.2. The graph is the
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same as in Figure 3.1, except that the edge between nodes v and w becomes available

after the packet passes w, but before it reaches v. The original face routing protocols fail

because the packet will be forwarded from v to w and will loop on the new face F ′
1. Our

new face routing is not affected by this change to the graph and routes the packet to the

destination as before.

The Tethered-Traversal protocol in my M.Sc. thesis extends the original face routing

protocols to deal with problems like the one illustrated in Figure 3.2. If the graph is

an edge dynamic plane graph, Tethered-Traversal succeeds as long as there is a stable

connected spanning subgraph during the traversal of each face, because a new intersec-

tion point will be found within the face of this stable subgraph that contains the face

being traversed at the beginning of the traversal. However, in mobile graphs, Tethered-

Traversal has some difficulties even when a stable connected spanning subgraph exists.

One problem is when the face of the stable subgraph containing the current face moves

so that it no longer intersects the line segment from the starting point to the destination.

In this case, a new starting point cannot be found. In Section 8.2, we present a variant

of Tethered-Traversal that uses this new version of face routing. Under a reasonable set

of assumptions, we prove that the current face will always contain a point that is closer

to the destination than the starting point was at the beginning of the traversal, and we

conjecture that our new variant of Tethered-Traversal guarantees message delivery.
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Simulating Face Routing On Virtual

Graphs

There are two problems with using face routing on a non-planar network graph: the

network graph may not have a connected spanning plane subgraph, and, even if such

a subgraph exists, extracting it may be difficult or complicated [33, 57, 5, 34]. In the

following, we describe a general approach to apply face routing on non-planar graphs

without extracting a plane subgraph.

A non-planar network graph can be viewed as a virtual plane graph. Conceptually,

we add a virtual node at each point where two or more edges cross, and split the edges at

these virtual nodes. Thus, we obtain a virtual plane graph that consists of the original

network nodes and the virtual nodes. If the original graph is connected, so is the virtual

plane graph, and if we apply face routing in this virtual plane graph, we would find a path

to the destination. We call this path a virtual path, because it may contain virtual nodes.

A virtual node cannot receive or send a packet. Kuhn et al. [39] and Lillis et al. [46]

maintain routing tables at real nodes to enable messages to be sent to and from virtual

nodes. In our approach, additional routing information does not need to be stored at

real nodes. We simply compute a real path in the network graph that follows the virtual

23
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path. We say that such a protocol simulates face routing in the virtual plane graph.

To formally define what it means for a real path to follow a virtual path, we first

introduce some notation and definitions. We use Greek letters α, β, etc., to denote the

nodes in a virtual path, which may be virtual or real, and use lowercase letters to denote

real nodes. Each edge in the virtual graph is either an entire edge in the network graph

or a part of it. We call an edge in the virtual graph a virtual edge. We use the beginning

node or point and ending node or point to refer to the two endpoints of a real or virtual

edge.

Given a virtual path whose last node is a real node, we define a function that maps

this virtual path to a sequence of real nodes as follows.

Definition 4.1. Let π = ν0, ν1, . . . , νk = u, for k ≥ 1, be a virtual path whose last node

νk is a real node. Let F (π) = u0, u1, . . . , uk−1, u, where ui is the beginning node of the

real edge that contains the virtual edge (νi, νi+1) for i = 0, . . . , k− 1. We say that a real

path P follows a virtual path π if F (π) is a subsequence of P .

Proposition 4.2. A protocol that simulates face routing in all virtual plane graphs guar-

antees message delivery in static connected graphs.

Proof. The virtual plane graph of a connected graph is also connected, because adding

virtual nodes and splitting an edge at a virtual node do not disconnect any path in the

original graph. Because face routing guarantees message delivery in a static connected

plane graph, the virtual path obtained by applying face routing in the virtual plane graph

of a static connected graph leads to the destination node. By definition, a protocol that

simulates face routing computes a real path that follows the virtual path and, hence,

leads to the destination node.

To simulate face routing in a virtual graph, there are two issues to be addressed. The

first is to compute the virtual path, and the second is to find a real path in the network
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that follows the virtual path. All the computation should be done in a distributed manner

and use only local information available at each node, plus the information the protocol

puts in the packet header.

The virtual path will be computed one edge at a time. A natural way to do this is to

let the beginning node of the real edge containing the current virtual edge determine the

next virtual edge. Given the current virtual edge (α, β), the next virtual edge (β, γ) is

the first virtual edge after (β, α) in clockwise order around β, as illustrated in Figure 4.1.

Suppose (α, β) is contained in the real edge (u, v), and (β, γ) is contained in the real edge
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Figure 4.1: Computing the next virtual edge

(w, x), which intersects (u, v) at β. If node u knows its neighbors, which (real) edges

intersect its incident (real) edges, and which (real) edges intersect them, then it is easy

for u to compute (β, γ). However, if node u only knows its neighbors and the real edges

that intersect its incident edges, node u cannot necessarily determine the ending point γ

of the next virtual edge.

With this limited information, the virtual path can still be determined, if we distribute

the computation in a different way. At each step of the traversal, given the beginning

point α of the current virtual edge and the real edge (u, v) that contains it, node u

computes the ending point β of the current virtual edge, which is also the beginning
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point of the next virtual edge, and the real edge (w, x) that contains it. To find a real

path that follows the virtual edge, node u computes a real path to w. Notice that, in

this distributed computation of the edges in the virtual path, the two ends of a virtual

edge may be determined at different real nodes: the beginning point of the virtual edge

and its underlying real edge are determined in one step at a node, and its ending point

is determined in the next step at a possibly different node.

Now we give an algorithm, EPND (Ending Point & Next Direction), which performs

the computation in this procedure. The input parameters of EPND are (u, v) and α,

where (u, v) is the real edge that contains the current virtual edge and α is the beginning

point of the current virtual edge. So, α could be either node u or an interior point on

edge (u, v). The output of EPND is β, the ending point of the current virtual edge,

which is also the beginning point of the next virtual edge; (w, x), the edge that contains

the next virtual edge; and π, a path from node u to node w, along which the packet

can be forwarded to w to continue the traversal. Figure 4.2 illustrates the geometric

relationships among the input and output parameters of EPND. The code for EPND is

shown in Figure 4.3.
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Figure 4.2: Illustration of the input and output parameters of Algorithm EPND

From the specifications of EPND and the definition of face routing, we get the fol-

lowing result.
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Algorithm EPND((u, v), α, β, (w, x), π)

. Executed by node u.

. Input: edge (u, v) and a point α on (u, v);

. Output: β, the first node on (u, v) after α in the virtual graph; (w, x), the edge containing the first

virtual edge after (β, u) in clockwise order around β; and π, a path from u to w in network graph.

1 begin

2 if there is an edge that crosses (α, v) then . the next virtual edge is along the closest crossing edge

3 let β be the crossing point on (α, v) that is closest to α

4 let (w, x) be the edge that contains the next virtual edge after (β, α) in clockwise order

around β

5 let π be a path from u to w in network graph

6 else . no edge crossing (α, v), the next edge begins at v

7 β ← v

8 (w, x) ← the next edge after (v, u) in clockwise order around v . note that w = v

9 π ← u,w

10 end

Figure 4.3: Algorithm EPND

Proposition 4.3. If the input (u, v) contains the current virtual edge along the boundary

of a virtual face and α is a point on that virtual edge, the output β of EPND is the ending

point of the current virtual edge and (w, x) is the edge that contains the next virtual edge

along the boundary of the same virtual face.

Note that the if part in EPND specifies what the outputs should be without explicitly

stating how to compute them, because it will depend on what information is available at

node u and what is the network graph model. In Chapter 5 and Chapter 6, we will show

that in unit disk graphs and quasi unit disk graphs, if node u knows the information about

the real nodes within 2 hops and 3 hops from it, respectively, EPND can be implemented

locally at node u. Furthermore, we will show that if less information is available at each

node, the computation of EPND can be distributed among multiple nodes.
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Once the ending point β of the current virtual edge is determined, node u checks

whether (α, β) contains any point that is closer to the destination than the starting point

of the current virtual face. If so, the traversal switches to the next virtual face; otherwise,

node u forwards the packet to node w, and the traversal is continued.



Chapter 5

Routing in Unit Disk Graphs

One of our research goals is to apply face routing on a non-planar network graph directly

without extracting a plane subgraph. If we can do this, nodes do not need to maintain

information about the plane subgraph. More importantly, this will extend the application

of face routing to graphs that do not contain a connected spanning plane subgraph.

In this chapter, we present two protocols that apply the ideas in Chapter 3 and 4

and prove their correctness. The first protocol is a simple implementation of the virtual

face routing approach described in Chapter 4, which requires that each node has two

hops neighbor information. The second one is a more clever version so that only one hop

neighbor information is required at each node. We prove that both protocols simulate

face routing in the virtual plane graph of connected unit disk graphs.

5.1 Geometric Properties of Unit Disk Graphs

We first study the properties of unit disk graphs to investigate what information is needed

at each node to simulate face routing. The following lemma gives a geometric property

of any two edges that cross each other in a unit disk graph.

Definition 5.1. For any edge (u, v), the lens with chord (u, v) is the intersection of the

29
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two circles with unit radius that contain (u, v) as a chord.

The shaded area in Figure 5.1 is an example. Note that if a node is in the lens with

chord (u, v), it is a neighbor of both u and v.
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Figure 5.1: The lens with chord (u, v)

Lemma 5.2. In a unit disk graph, if edge (x, y) intersects edge (u, v), and neither x

nor y is in the lens with chord (u, v), then x and y are both neighbors of u or are both

neighbors of v.

Proof. In a unit disk graph, every edge has length at most 1. Consider Figure 5.2, in

which the two straight lines are parallel to (u, v) and have distance 1 from (u, v), and

the two circles are centered at u and v, respectively, with radius 1. Thus, the thick curve

is the set of all points distance 1 from (u, v). Suppose (x, y) intersects (u, v) at point z.

Then x is distance at most 1 from z and, hence, (u, v); and y is distance at most 1 from

z and, hence, (u, v). Hence x and y are both located inside or on the thick curve.

Next, we will show that under the assumptions in the lemma, x is a neighbor of at

least one of u and v. Suppose not. Then x is inside one of the two triangle-shaped areas

that are not covered by the two circles, say, the one formed by the line segment between

a and b, the arc between a and c, and the arc between b and c, in Figure 5.3.

By assumption, (x, y) intersects (u, v) and y is not in the lens with chord (u, v). Then,

(x, y) must intersect the lower arc between u and v, say, at point y ′. Also, (x, y) must
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intersect either the arc between a and c or the arc between b and c. Suppose (x, y)

intersects the arc between a and c at point x′, and (x, y) intersects the line segment

between c and u at point m, as shown in Figure 5.3. From the triangle inequality,

|x′m| + |mu| ≥ |ux′|, and |y′m| + |mc| ≥ |cy′|. We have that |ux′| = |cy′| = 1. So,

|x′m|+ |mu|+ |y′m|+ |mc| = |x′y′|+ |uc| ≥ 2. Since |uc| = 1, it follows that |x′y′| ≥ 1.

Because x is not a neighbor of u, |xu| > 1 so |xx′| > 0. Because y is not in the lens with

chord (u, v), |yy′| > 0. Hence, |xy| = |x′y′| + |xx′| + |y′y| > |x′y′| ≥ 1. This contradicts

the fact that every edge in a unit disk graph has length at most 1. Therefore, x is a
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neighbor of at least one of u and v. The same is true for y.

Finally, by contradiction, suppose neither u nor v is a neighbor of both x and y, say,

x is a neighbor of u but not v, and y is a neighbor of v but not u, as illustrated in

Figure 5.4.
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Figure 5.4: Proof of Lemma 5.2

Then we have 6 yvu > 6 uyv, because |uy| > 1 ≥ |uv|. Also, because (x, y) intersects

(u, v), 6 xyv ≤ 6 uyv and 6 yvx ≥ 6 yvu. Thus, 6 yvx > 6 xyv, which yields |xy| > |xv| > 1.

This contradicts the fact that |xy| ≤ 1. Therefore, either u or v must be a neighbor of

both x and y.

Corollary 5.3. In a unit disk graph, if edge (x, y) intersects edge (u, v), both x and y

are at most two hops away from u and v.

Proof. Case 1: Neither of x and y are in the lens with chord (u, v). From Lemma 5.2,

either u or v is a neighbor of both x and y. Say, u is a neighbor of both x and y. Then

x and y are one hop from u and at most two hops from v.

Case 2: At least one of x and y is in the lens with chord (u, v). Say, x is in the lens.

Then, x is a neighbor of both u and v. Hence, y is at most two hops away from u and

v.

Corollary 5.3 implies that if each node has two-hop neighborhood information, it

knows all the edges that intersect each of its incident edges. Thus, the EPND algorithm

described in Chapter 4 can be implemented locally at each node.
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5.2 Virtual-Face-Traversal-For-UDG-With-Two-

Hop-Info

Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info is a local routing protocol for unit

disk graphs that illustrates the virtual face routing approach described in Chapter 4. It

assumes that nodes have two hop neighbor information. It calls the EPND algorithm in

Chapter 4 to compute the ending point of the current virtual edge and the direction of

the next virtual edge. Face switching occurs when a point closer to the destination is

found.

The overall idea of the Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info protocol

is as follows. Starting at the source node s, compute the edge (s, v) that contains the first

virtual edge. Then node s executes EPND((s, v), s, β, (w, x), π) to compute the ending

point β of the first virtual edge, which is the beginning point of the next virtual edge.

It also computes the real edge (w, x) that contains the next virtual edge. Then, node s

forwards the packet to node w, and w continues the traversal. This procedure continues

until a point closer to the destination is found. Then a new starting point is determined

and the traversal on the next virtual face starts from there.

Now we explain the components of Virtual-Face-Traversal-For-UDG-With-Two-Hop-

Info in more detail. We first describe the packet header fields the protocol uses to store

information about the routing process. They include packet.destination, packet.next edge,

packet.last point, and packet.distance. The destination node of the packet is stored

in packet.destination. The packet.next edge field stores the network edge that con-

tains the next virtual edge along the boundary of the current virtual face. At each

step, once packet.next edge is computed, the packet is forwarded to the beginning

node of packet.next edge. The packet.last point field stores the beginning point of

the virtual edge contained in packet.next edge. When the packet reaches the begin-

ning node of packet.next edge, that node uses the current value of packet.next edge and
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packet.last point to call EPND and updates packet.next edge and packet.last point with

the output from EPND. Finally, packet.distance stores the distance from the starting

point of the current virtual face to the destination. This distance is used to check

whether the traversal should switch to the next virtual face.

Next, we describe the algorithms called by the Virtual-Face-Traversal-For-UDG-With-

Two-Hop-Info protocol. At the source node or at an intermediate node where a new

starting point is found, the node needs to determine the direction of the first virtual edge

on the virtual face to be traversed. This is done in the algorithm INIT-UDG2HOP, shown

in Figure 5.5. The input of INIT-UDG2HOP is the starting point of the virtual face.

The first virtual edge is along the first edge from the line to the destination in clockwise

order around the starting point. INIT-UDG2HOP assigns the edge that contains the

first virtual edge to packet.next edge, assigns the starting point to packet.last point, and

assigns the distance from the starting point to the destination to packet.distance.

Algorithm INIT-UDG2HOP(p)

. Input: p, the starting point of the virtual face to be traversed

. Executed by a node that currently holds the packet and that has an incident edge containing p

(which may be either endpoint of this edge).

. It computes the network edge that contains the first virtual edge along the boundary of the virtual

face and sets up packet header.

. It requires that the node has two hop neighbor information.

1 begin

2 (v1, v2) ← the first edge in clockwise order around p starting from the line segment from p to

packet.destination. . note that 6 (packet.destination)pv2 < 180◦

3 packet.next edge ← (v1, v2)

4 packet.last point ← p

5 packet.distance ← the distance from p to packet.destination

6 end

Figure 5.5: Algorithm INIT-UDG2HOP
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From the definition of face routing and the right-hand rule, the first virtual edge

along the boundary of the virtual face to be traversed is the first edge in clockwise order

around the starting point starting from the line segment from the starting point to the

destination node. Therefore we have the following result.

Proposition 5.4. When INIT-UDG2HOP returns, packet.next edge is the edge that

contains the first virtual edge on the boundary of the virtual face to be traversed, and

packet.last point is the starting point on that virtual face.

At the start of the routing process, the source node creates a packet containing the

packet destination and executes INIT-UDG2HOP to initialize the rest of the packet

header. It then executes Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-

Info, which is the main algorithm of the protocol, executed by each node during the

routing process.

During the traversal along the boundary of the current virtual face, the beginning

node of packet.next edge calls EPND to compute the ending point of the current virtual

edge and the edge that contains the next virtual edge. During the call of EPND, the

current node u finds the edge crossing (u, v) that is closest to α, if one exists. From

Corollary 5.3, when a node has two hop neighbor information, it can locally find all

edges crossing its incident edges. Therefore, EPND can be performed locally.

In more detail, EPND can be implemented as follows. From Lemma 5.2, there are

three (not necessarily disjoint) cases to consider for an edge crossing (u, v): (i) both

endpoints of the edge are neighbors of node u; (ii) both endpoints of the edge are neighbors

of node v; and (iii) one endpoint is a neighbor of both u and v and the other endpoint is

neither a neighbor of u nor a neighbor of v. In the last case, one endpoint of the crossing

edge is in the lens with chord (u, v), as shown in Figure 5.1. In any of these cases, an

edge can be found locally by node u, because node u has two hop neighbor information.

Therefore, node u checks all possible edges crossing (u, v) and finds the intersection point

β that is closest to α, the edge (w, x) that contains the next virtual edge after (β, α) in
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clockwise order around β, and a path π from u to w.

The path π returned by EPND has at most two hops, because both endpoints of an

edge crossing (u, v) are at most two hops away from u by Corollary 5.3. If there is not any

crossing edge, the beginning node of the edge containing the next virtual edge is v, which

is a neighbor of u. Hence, in Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info, the

path π returned by EPND is not stored in the packet header. Node u just checks whether

the beginning node of packet.next edge is its neighbor. If so, it forwards the packet to

that node directly; otherwise, it forwards the packet to a node that is a neighbor of them

both. When this intermediate node receives the packet, it will find that it is not the

beginning node of packet.next edge. In this case, it just relays the packet to that node.

Finally, we describe the procedure for face switching. Face switching occurs when

the packet reaches a point on the boundary of the current virtual face that is closer to

the destination than the current starting point is. Hence, after a node has computed

the ending point of the virtual edge contained in packet.next edge, it checks whether the

distance from any point on this virtual edge to the destination node is less than the

distance from the current starting point. If so, the closest point to the destination on

this virtual edge will be the new starting point for the next virtual face to be traversed.

The node calls INIT-UDG2HOP to find the edge containing the first virtual edge along

the boundary of the next virtual face and update the packet header fields. Then the

packet should be forwarded to the beginning node of the new packet.next edge to start

the traversal of the new virtual face. It is possible that the beginning node is just the

current node. In this case, no packet forwarding is needed and the current node just

executes Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info again. If the

beginning node of the new packet.next edge is not the current node, it is at most two

hops away, because both endpoints of the new packet.next edge are within two hops of

the current node. Hence, the current node forwards the packet to that node in the same

way as we described before.
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The complete code for Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-

Info is shown in Figure 5.6.

Theorem 5.5. Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info simulates face

routing in the virtual plane graph of connected unit disk graphs.

Proof. Let π denote the virtual path obtained by applying face routing in the virtual

plane graph. To prove the theorem, we need to show that the path computed by Virtual-

Face-Traversal-For-UDG-With-Two-Hop-Info follows the virtual path π, i.e., it contains

the subsequence F (π), defined in Chapter 4. Because the packet is always forwarded to

the beginning node of the current packet.next edge during the routing process, it suffices

to prove that the sequence consisting of the beginning node of each successive value of

packet.next edge is F (π).

At the source node or when a new starting point is found, INIT-UDG2HOP is called

to compute the first virtual edge. From Proposition 5.4, when INIT-UDG2HOP returns,

packet.next edge is the edge that contains the first virtual edge on the boundary of the

virtual face to be traversed. At the beginning node of each packet.next edge, EPND is

called to compute the next edge. From Proposition 4.3, the output (w, x) from EPND

is the edge containing the next virtual edge along the boundary of the current virtual

face. If no new starting point is found, (w, x) is assigned to packet.next edge. Other-

wise, the traversal switches to the next virtual face. Therefore, during the traversal,

packet.next edge is always the edge that contains each virtual edge in the virtual path

π. Hence, the sequence of beginning nodes of packet.next edge is F (π). Thus Virtual-

Face-Traversal-For-UDG-With-Two-Hop-Info simulates face routing in the virtual plane

graph.
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Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info

. Performed by node u, the node that currently holds the packet.

. The information stored in the packet header is:

• packet.destination, the destination node of the packet;

• packet.next edge, the network edge containing the next virtual edge;

• packet.last point, the ending point of the previous virtual edge or the starting point on the

current virtual face if packet.next edge contains the first virtual edge on that face; and

• packet.distance, the distance from the starting point of the current virtual face to the

destination node.

1 begin

2 if u is packet.destination then

3 release the packet; return

4 if packet.destination is a neighbor of u then

5 forward the packet to packet.destination; return

6 if u is not the beginning node of packet.next edge then

7 forward the packet to the beginning node of packet.next edge; return

. u is the beginning node of packet.next edge

8 let v denote the ending node of packet.next edge

9 EPND((u, v), packet.last point, β, (w, x), π)

10 d ← shortest distance from a point on edge (packet.last point, β) to packet.destination

11 if d < packet.distance then . switch faces

12 p ← the closest point to packet.destination on edge (packet.last point, β)

13 INIT-UDG2HOP(p)

14 if u is the beginning node of packet.next edge then

15 Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info

16 return

17 else

18 packet.next edge ← (w, x)

19 packet.last point ← β

. route the packet to the beginning node of packet.next edge

20 let y denote the beginning node of packet.next edge

21 if y is a neighbor of u then

22 forward the packet to y

23 else

24 find node z such that z is a neighbor of both u and y . z is either v or the ending node of

packet.next edge

25 forward the packet to z

26 return

27 end

Figure 5.6: Algorithm Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info
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5.3 Virtual-Face-Traversal-For-UDG-With-One-

Hop-Info

Virtual-Face-Traversal-For-UDG-With-One-Hop-Info is another distributed local routing

protocol for unit disk graphs that applies the virtual face routing approach. It assumes

that nodes have only one hop neighbor information. With only one hop neighbor in-

formation, a node cannot find all edges crossing its incident edges without exchanging

information with its neighbors. One simple solution to this problem is that, when a node

has a packet to be forwarded, it first sends a query to all its neighbors to collect the

information about its two-hop neighbors. Then the node has sufficient information to

compute all virtual nodes on its incident edges and, thus, to compute the boundary of

the current virtual face.

Virtual-Face-Traversal-For-UDG-With-One-Hop-Info uses a different approach. Face

routing repeatedly computes the next edge along the boundary of the current face. In

a virtual plane graph, this becomes the computation of the underlying network edge

that contains the next virtual edge along the boundary of the current virtual face. Re-

call that, in Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info, this is done by calling

EPND at the beginning node of packet.next edge. In Virtual-Face-Traversal-For-UDG-

With-One-Hop-Info, this computation is carried out collectively by the beginning node

of packet.next edge, the nodes inside the lens with chord packet.next edge, if any, and the

ending node of packet.next edge. This requires less communication than having a node

query its neighbors about its two-hop neighbors.

To compute the next edge, we want to find the first virtual node on (α, v) after α, if

one exists. As discussed in section 5.2, there are three cases for an edge crossing (u, v):

(i) both endpoints of the edge are neighbors of node u; (ii) both endpoints of the edge

are neighbors of node v; and (iii) one endpoint is a neighbor of both u and v and the

other endpoint is neither a neighbor of u nor a neighbor of v. With one hop neighbor
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information, node u can find all edges that belong to case (i), node v can find all edges

that belong to case (ii), and nodes inside the lens with chord (u, v) can collectively find

all edges that belong to case (iii). Therefore, the computation of finding the next edge

is divided into three stages. A packet header field, packet.mode, is used to indicate the

stage of the computation. In each stage, one case is checked and a candidate for the next

edge is computed. When the packet reaches node v, the ending node of packet.next edge,

all edges crossing (α, v) have been considered and node v can determine the new value of

packet.next edge. To prove the correctness, we show that the new value of packet.next edge

is the same as computed by node u in Virtual-Face-Traversal-For-UDG-With-Two-Hop-

Info.

Now we describe the computation in detail. When the routing process starts at the

source node, the source node creates a packet containing the packet destination and

executes the INIT-UDG1HOP algorithm, shown in Figure 5.7, to compute the edge con-

taining the first virtual edge along the boundary of the virtual face to be traversed and

initialize the rest of the packet header. Note that in INIT-UDG2HOP, the initialization

algorithm used in the previous section, the starting point can be any point on an edge

incident to the current node, but it requires that the node has two hop neighbor infor-

mation. The INIT-UDG1HOP algorithm can only be applied when the starting point is

at the current node. Later, we will explain how to compute the edge containing the first

virtual edge and update the packet header when the starting point is not at a node.

The computation of finding the next edge begins when the current node is the be-

ginning node of packet.next edge and packet.mode is “traversing”. At this stage, the

algorithm is concerned with crossing edges that belong to case (i). Let (u, v) denote edge

packet.next edge, and let α denote point packet.last point, the beginning point of the cur-

rent virtual edge, which may be either node u or an interior point on edge (u, v). Node u

calls a subroutine, LCC (Local Closest Crossing), to find the edges crossing (α, v) both

of whose endpoints are neighbors of u and to compute a candidate for the next edge.
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Algorithm INIT-UDG1HOP

. Executed by node u that currently holds the packet and is the starting point of the virtual face to

be traversed.

. It computes the network edge that contains the first virtual edge along the boundary of the virtual

face and sets up packet header.

1 begin

2 (u, v) ← the first edge in clockwise order around u starting from the line segment from u to

packet.destination

3 packet.next edge ← (u, v)

4 packet.last point ← u

5 packet.distance ← the distance from u to packet.destination

6 packet.mode ← “traversing”

7 end

Figure 5.7: Algorithm INIT-UDG1HOP

A packet header field, packet.closest point, is used to store the next node after α on

(α, v) among those real and virtual nodes which are currently known by the node that

has the packet. It is initialized to v by node u. In LCC, node u finds all the edges it

sees that cross (α, v). If there exist such edges, it computes the intersection points of

these edges with (α, v) and determines which is closest to α. This point is assigned to

packet.closest point. Another packet header field, packet.crossing edge, is used to store

the current candidate for the next edge. It is initialized to null by node u. Among

the edges known to node u that cross (α, v) at packet.closest point, LCC computes the

edge that contains the next virtual edge after (packet.closest point, α) in clockwise order

around packet.closest point. This edge is the current candidate for the next edge and is

assigned to packet.crossing edge. The code for the LCC algorithm is shown in Figure 5.8.

Next, node u sets packet.mode to “on side path” and stores the list of the nodes in

the lens area, excluding itself but including the ending node v of packet.next edge, in the

packet header field packet.side path. This list contains the nodes in nondecreasing order
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Algorithm LCC (Local Closest Crossing)

. Executed by node z that currently holds the packet, which can be the beginning node of

packet.next edge, the ending node of packet.next edge, or a node in the lens with chord

packet.next edge.

. It computes the first real or virtual node on packet.next edge after packet.last point that is known

to the current node. It also computes a candidate for the next edge and updates packet.closest point

and packet.crossing edge.

1 begin

2 let (u, v) denote packet.next edge and let α denote packet.last point

3 if z = u or z = v then

4 let E = {(v1, v2) | v1 and v2 are neighbors of z and (v1, v2) is an edge that crosses (α, v)}

5 else

6 let E = {(z, v′) |

v′ is a neighbor of z and not a neighbor of either u or v and (z, v′) crosses (α, v)}

7 if E is not empty and packet.crossing edge is not null then

8 E←E ∪ {packet.crossing edge}

9 if E is not empty then

. update packet.closest point and packet.crossing edge

10 β ← the closest point to α at which an edge in E intersects (α, v)

11 (w, x) ← the edge in E intersecting (α, v) at β that contains the next virtual edge after

(β, α) in clockwise order around β . note that 6 αβx < 180◦

12 packet.closest point ← β

13 packet.crossing edge ← (w, x)

14 end

Figure 5.8: Algorithm LCC
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of their distance to node u. It always ends with node v. Node u then forwards the packet

to the first node in this list.

When a node in the lens area receives the packet with packet.mode = “on side path”

and it is not node v, it calls LCC to recompute the values of packet.closest point and

packet.crossing edge, taking account of possible edges crossing (α, v) that are seen by the

current node but were not seen by the previous nodes. LCC finds every edge incident

to the current node that crosses (α, v) and whose other endpoint is not a neighbor of

either u or v. Such an edge belongs to case (iii). If there are such edges, LCC com-

putes the intersection points of these edges with (α, v) and, among these points and

the point stored in packet.closest point, LCC finds the point closest to α and assigns it

to packet.closest point. This point is the virtual node on (α, v) currently known to be

closest to α. Then, among the edges that intersect (α, v) at this point, which might

include packet.crossing edge, LCC finds the edge containing the next virtual edge after

(packet.closest point, α) in clockwise order around packet.closest point and assigns it to

packet.crossing edge. Then the packet is forwarded to the next node in packet.side path.

When the packet reaches the ending node v of packet.next edge, which is the last node

in packet.side path, all crossing edges that belong to case (i) or (iii) have been considered

as the candidate for the next edge. Node v sets packet.mode to “finding next edge”.

Then it calls LCC to consider the crossing edges seen by node v that belong to case (ii)

and update packet.closest point and packet.crossing edge if necessary.

When LCC returns at node v, all three cases for edges crossing the interior of (α, v)

have been considered. Therefore, we have the following proposition about the LCC

algorithm.

Proposition 5.6. If there exist edges crossing the interior of (α, v), then after node v

performs LCC, packet.closest point is β, the node on (α, v) that is closest but not equal

to α, and packet.crossing edge is the edge containing the next virtual edge after (β, α) in

clockwise order around β.
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Proof. Let (w, x) be the edge that contains the next virtual edge after (β, α) in clockwise

order around β. From Lemma 5.2, edge (w, x) belongs to one of the three cases: (i) both w

and x are neighbors of node u; (ii) both w and x are neighbors of node v; and (iii) one of w

and x is a neighbor of both u and v and the other is neither a neighbor of u nor a neighbor

of v. Therefore, edge (w, x) belongs to the edge set E in LCC when LCC is performed

at one or more nodes in the lens with chord (u, v), including u and v. At the first such

node, LCC assigns β to packet.closest point and (w, x) to packet.crossing edge. In the

subsequent calls to LCC, packet.closest point and packet.crossing edge do not change,

because packet.crossing edge is always considered in the computation. Therefore, after

node v performs LCC, packet.closest point is β and packet.crossing edge is (w, x).

If no edge crosses the interior of (α, v), packet.closest point and packet.crossing edge

are not updated in LCC. Therefore, after LCC returns at node v, packet.closest point is

v and packet.crossing edge is null, which are their initial values. In this case, node v is

the node on (α, v) that is closest but not equal to α. Therefore, whether there are edges

crossing the interior of (α, v) or not, after LCC returns at node v, packet.closest point is

the ending node β of the current virtual edge.

After performing LCC, node v checks whether there is a point on the virtual edge

(α, β) that is closer to the destination than the starting point is. First, suppose there is

no such point. Then the packet will continue to travel along the boundary of the current

face. Node v assigns packet.closest point to packet.last point. If packet.crossing edge is

not null, node v assigns packet.crossing edge to packet.next edge. Otherwise, node v sets

packet.next edge to the next edge after (v, u) in clockwise order around v.

From the above description and the definition of face routing, we get the following

result.

Proposition 5.7. When no face switching occurs, the new value of packet.last point is

the ending node of the current virtual edge and the new value of packet.next edge is the

edge that contains the next virtual edge along the boundary of the same virtual face.
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If there exists a point on the virtual edge (α, β) that is closer to the destination than

the starting point is, the point p on edge (α, β) that is closest to the destination will be

the new starting point for the next virtual face to be traversed, and the traversal switches

to the next virtual face. In this case, node v needs to find the network edge that contains

the first virtual edge along the boundary of the next virtual face. We call this network

edge the first edge.

There are three cases to consider: (i) p is the real node v (i.e., p = β = v), (ii) p is

a virtual node (i.e., p = β 6= v), and (iii) p is not at a node (i.e., p 6= β). In the first

case, the current node v is the starting point of the next virtual face. Then, node v calls

INIT-UDG1HOP. Recall that INIT-UDG1HOP computes the first edge when the current

node is the starting point and it also updates packet header fields.

The second case is when β is a virtual node and p is at β. Then, the first edge is the

network edge that contains the first virtual edge in clockwise order around β starting from

the line segment between β and packet.destination. Figure 5.9 illustrates an example of

this case. In this example, the first edge is edge (x,w). However, node v might not know

all the edges that cross (u, v) at β. To handle this problem, Virtual-Face-Traversal-For-

UDG-With-One-Hop-Info uses packet.first edge to keep track of a candidate for the first

edge. Specifically, after a node calls LCC, if packet.closest point is a virtual node and its

distance to the destination is less than packet.distance, the node calls LFE (Local First

Edge) to compute a value for packet.first edge. LFE finds the edge that contains the first

virtual edge in clockwise order around packet.closest point starting from the line segment

between packet.closest point and packet.destination among those edges the current node

knows about. This edge is stored as the new value of packet.first edge. The code for LFE

is shown in Figure 5.10. Initially, packet.first edge = null. After node v performs LCC

and has determined that p = β 6= v, it also calls LFE. The following proposition shows

that when LFE returns at node v, packet.first edge is the first edge. Therefore, node v

assigns packet.first edge to packet.next edge.
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Figure 5.9: Example of the first edge when more than one edge cross (u, v) at β

Algorithm LFE (Local First Edge)

. Executed by node z that currently holds the packet.

1 begin

2 let β denote packet.closest point

3 let E be the set of the (directed) network edges containing β that are known to z

4 if packet.first edge is not null then

5 E←E ∪ {packet.first edge}

6 packet.first edge ← the edge in E that contains the first virtual edge in clockwise order around

β starting from the line segment between β and packet.destination

7 end

Figure 5.10: Algorithm LFE

Proposition 5.8. If p = β 6= v, after node v performs LFE, packet.first edge is the

edge containing the first virtual edge in clockwise order around β starting from the line

segment between β and packet.destination.

Proof. Let (v1, v2) be the edge containing the first virtual edge in clockwise order around

β starting from the line segment between β and packet.destination. Edge (v1, v2) may be

(u, v), (v, u), or an edge crossing (α, v) at β. Any edge crossing (α, v) is known to one

or more nodes in the lens with chord (u, v), including u and v. Therefore, β and (v1, v2)
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are known to at least one of these nodes.

After the first node z that knows about β and (v1, v2) calls LCC, packet.closest point

is β. Because packet.closest point is a virtual node and its distance to the destination

is less than packet.distance, node z calls LFE and, after LFE returns, packet.first edge

is (v1, v2). In subsequent calls to LFE, packet.first edge does not change, by definition.

Therefore, after node v performs LFE, packet.first edge is the edge containing the first

virtual edge in clockwise order around β starting from the line segment between β and

packet.destination.

The third case of the new starting point is when p is an interior point on edge (α, β).

Then the first edge is either (u, v) or (v, u) – the direction depends on the location of the

destination node with respect to (u, v). As illustrated in Figure 5.11, if the destination

node is on the left side of (u, v) (i.e. 6 vud > 180◦), the first edge is (u, v); if the destination

node is on the right side of (u, v) (i.e. 6 vud < 180◦), the first edge is (v, u). Since the

current value of packet.next edge is (u, v), packet.next edge is updated to (v, u) in the

latter case.
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Figure 5.11: The direction of the first edge when p is an interior point on edge (α, β)

Thus, in every case, when a new starting point is found, node v can find the first edge

and update packet.next edge. It also updates packet.last point and packet.distance with

the new starting point and its distance to the destination. From the definition of face
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routing and the right-hand rule, we have the following result.

Proposition 5.9. When a new starting point p is found, the new value of

packet.next edge is the edge that contains the first virtual edge on the boundary of the

virtual face to be traversed, and the new value of packet.last point is the starting point on

that virtual face.

Whether or not a new starting point is found, packet.next edge is now the network

edge containing the next virtual edge along the virtual path. Node v then changes

packet.mode back to “traversing”.

If the beginning node of packet.next edge is now node v, the computation of the

next edge is complete. However, the beginning node could also be a neighbor of v or

a node two hops away from v. In these cases, the packet is routed to the beginning

node of packet.next edge either directly or via an intermediate node. If an intermedi-

ate node receives the packet, it knows to forward the packet to the beginning node of

packet.next edge, since packet.mode is “traversing”.

The stages of the computation are illustrated in Figure 5.12. In the diagram, a solid

arrow line indicates that the packet is forwarded to another node, and a dashed arrow

line indicates that the packet stays at the same node.

The code for Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info, which

is the main algorithm of the protocol, executed by each node during the routing process,

is shown in Figure 5.13, 5.14, and 5.15. Note that the algorithm can be optimized to use

fewer packet header fields. For example, the stage of the computation can be inferred

from packet.side path, therefore it is not necessary to have the packet.mode field in the

packet header. Furthermore, the candidate for the next edge can be stored directly

in packet.next edge, which will have the correct value at the end of the computation,

so packet.crossing edge is not necessary. To make the code clearer and easier to prove

correct, we do not make these optimizations.
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Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info

. Performed by node z, the node that currently holds the packet.

. The information stored in the packet header is as follows:

• packet.destination, the destination node of the packet;

• packet.next edge, the network edge containing the next virtual edge;

• packet.last point, the ending point of the previous virtual edge or the starting point on the

current virtual face if packet.next edge contains the first virtual edge on that face;

• packet.distance, the distance from the starting point of the current virtual face to the

destination node;

• packet.mode, the stage of the computation;

• packet.side path, the list of the nodes in the lens with chord packet.next edge including the

ending node of packet.next edge, in non-decreasing order of their distance to the beginning

node of packet.next edge;

• packet.closest point, the closest virtual node after packet.last point that is known to the

current node;

• packet.crossing edge, the candidate for the next edge; and

• packet.first edge, the network edge containing the first virtual edge in clockwise order around

packet.closest point starting from the line segment from packet.closest point to

packet.destination.

1 begin

2 if z is packet.destination then

3 release the packet; return

4 if packet.destination is a neighbor of z then

5 forward the packet to packet.destination; return

6 let (u, v) denote the edge packet.next edge

7 if packet.mode = “on side path” then

8 if z is not the last node in packet.side path then

9 LCC

10 if packet.closest point 6= v and

|(packet.closest point)(packet.destination)| < packet.distance then

11 LFE

12 forward the packet to the next node in packet.side path after z; return

13 else

14 packet.mode ← “finding next edge”

(Continued on the next page)

Figure 5.13: Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info
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Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (Con’t)

15 if packet.mode = “finding next edge” then

. z = v, the ending node of packet.next edge

16 LCC

. packet.closest point is the ending point of the current virtual edge contained in packet.next edge

17 d ← shortest distance from a point on (packet.last point, packet.closest point) to

packet.destination

18 if d < packet.distance then . switch faces

19 p ← the closest point to packet.destination on (packet.last point, packet.closest point)

20 if p is v then

21 INIT-UDG1HOP

22 Virtual-Face-Traversal-For-UDG-With-One-Hop-Info; return

23 else if p is packet.closest point then . packet.closest point is a virtual node

24 LFE

25 packet.next edge ← packet.first edge

26 else . p is a point on (packet.last point, packet.closest point)

27 if 6 vu(packet.destination) < 180◦ then . packet.destination is at the right side of (v, u)

28 packet.next edge ← (v, u)

29 packet.last point ← p

30 packet.distance ← d

31 else . next virtual edge is along the boundary of the current virtual face

32 if packet.crossing edge is null then . no crossing edge

33 packet.next edge ← the next edge after (v, u) in clockwise order around v

34 packet.last point ← v

35 else

36 packet.next edge ← packet.crossing edge

37 packet.last point ← packet.closest point

. route the packet to the beginning node of packet.next edge

38 packet.mode ← “traversing”

39 if z is not the beginning node of packet.next edge then

40 let u′ denote the beginning node of packet.next edge

41 if u′ is a neighbor of z then

42 forward the packet to u′; return

43 else

44 find node y such that y is a neighbor of both z and u′

45 forward the packet to y; return

(Continued on the next page)

Figure 5.14: Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (con’t)
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Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (Con’t)

46 if packet.mode = “traversing” then

47 if z is not the beginning node of packet.next edge then . in transit

48 forward the packet to the beginning node of packet.next edge; return

. z = u, the beginning node of packet.next edge

49 packet.closest point ← v

50 packet.crossing edge ← null

51 LCC

52 packet.first edge ← null

53 if packet.closest point 6= v and |(packet.closest point)(packet.destination)| < packet.distance

then

54 LFE

55 let v1, · · · , vm be the nodes inside the lens with chord packet.next edge in non-decreasing

order of their distance to u

56 packet.mode ← “on side path”

57 packet.side path ← v1, · · · , vm, vm+1 = v

58 forward the packet to v1; return

59 end

Figure 5.15: Algorithm Virtual-Face-Traversal-For-UDG-With-One-Hop-Info (con’t)

From Proposition 4.2, the following result suffices to prove that Virtual-Face-

Traversal-For-UDG-With-One-Hop-Info guarantees message delivery in connected unit

disk graphs.

Theorem 5.10. Virtual-Face-Traversal-For-UDG-With-One-Hop-Info simulates face

routing in the virtual plane graph of connected unit disk graphs.

Proof. By Theorem 5.5, it suffices to prove that the sequence consisting of the successive

values of packet.next edge is the same in both Virtual-Face-Traversal-For-UDG-With-

Two-Hop-Info and Virtual-Face-Traversal-For-UDG-With-One-Hop-Info algorithms.

At the source node s, packet.next edge is initialized by INIT-UDG2HOP(s) in Virtual-

Face-Traversal-For-UDG-With-Two-Hop-Info and by INIT-UDG1HOP in Virtual-Face-

Traversal-For-UDG-With-One-Hop-Info. In both cases, packet.next edge is set to the

first edge in clockwise order around s starting from the line segment from s to

packet.destination. Furthermore, packet.last point is initialized to the source node s in
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both algorithms.

In Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info, packet.next edge and

packet.last point are updated at node u. If no face switching occurs, they are updated

with the edge (w, x) and the node β returned by EPND. Thus, from Proposition 4.3

and Proposition 5.7, the new values of packet.next edge and packet.last point are the

same in both algorithms. If face switching occurs, it follows from Proposition 5.4 and

Proposition 5.9 that the new values of packet.next edge and packet.last point are the

same in both algorithms.

Therefore, the sequence consisting of the successive values of packet.next edge is the

same in both algorithms.



Chapter 6

Routing in Quasi Unit Disk Graphs

In this chapter, we will present two routing protocols for quasi unit disk graphs that

apply face routing on the network graph directly. Similar to the two protocols presented

in Chapter 5, in the first protocol, each node maintains enough information so that it

can compute the next edge on which to route a packet; in the second protocol, this

computation is distributed to multiple nodes so as to reduce the amount of information

required at each node. We take advantage of some geometric properties of quasi unit

disk graphs to make the second protocol quite simple and efficient. Before describing the

protocols, we first show these geometric properties of quasi unit disk graphs in section 6.1.

6.1 Geometric Properties of Quasi Unit Disk Graphs

Our study of routing protocols for the quasi unit disk graph model and all the subsequent

models that contain it as a special case focuses on graphs with ε ≥ 1√
2
. The design of

our routing protocols is based on a geometric property of intersecting edges in quasi unit

disk graphs, whose proof, in turn, uses a property of chords of a circle.

Proposition 6.1. Let AB and CD be two chords and let dAB and dCD denote their

distance to the center, respectively. If dAB ≤ dCD, then |AB| ≥ |CD|.

54
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Proof. The perpendicular bisector of a chord of a circle passes through the center of the

circle. From this property and the Pythagorean theorem, we have ( 1
2
|AB|)2 + d2

AB =

(1
2
|CD|)2 + d2

CD = (radius of the circle)2. Therefore, if dAB ≤ dCD, then |AB| ≥ |CD|.

Lemma 6.2. In a quasi unit disk graph with ε ≥ 1√
2
, if edge (x, y) intersects edge (u, v)

at a point q between u and the midpoint m of (u, v), then at least one of x and y is a

neighbor of u.

Proof. To obtain a contradiction, suppose both x and y are not a neighbor of u. From the

definition of quasi unit disk graphs, both x and y are outside of the circle centered at u

with radius ε. Let x′ and y′ be the intersections of (x, y) with that circle, so |xy| > |x′y′|.

See Figure 6.1.

Because the length of any edge in quasi unit disk graphs is at most 1, |um| ≤ 1/2.

Consider the circle centered at u with radius ε. Let ab be the chord of the circle that

is perpendicular to (u, v) and intersects (u, v) at m. Then m is the midpoint of ab,

|um|2 + |am|2 = ε2, ε ≥ 1√
2
, and |um| ≤ 1/2. Thus |am| ≥ 1/2 and |ab| ≥ 1.
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Figure 6.1: Proof of Lemma 6.2

Let a′b′ be the chord of the circle centered at u with radius ε that is perpendicular

to (u, v) and intersects (u, v) at q. The distance from u to a′b′ is |uq|. Because x′y′
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intersects (u, v) at q, the distance from u to chord x′y′ is less than or equal to |uq|. From

Proposition 6.1, |x′y′| ≥ |a′b′|. Furthermore, since q is between u and m, |uq| ≤ |um|.

From Proposition 6.1, |a′b′| ≥ |ab|.

Therefore, we get |xy| > |x′y′| ≥ |ab| ≥ 1. This contradicts the fact that (x, y) is an

edge in a quasi unit disk graph. Hence, at least one of x and y is a neighbor of u.

Corollary 6.3. In a quasi unit disk graph with ε ≥ 1√
2
, if edge (x, y) intersects edge

(u, v), then at least one endpoint of (x, y) is at most two hops away from u and v.

Proof. Without loss of generality, suppose edge (x, y) intersects edge (u, v) at a point

between u and the midpoint of (u, v). From Lemma 6.2, at least one of x and y is a

neighbor of u and thus one hop away from u and at most two hops away from v.

From Corollary 6.3, we know that if a node has three-hop neighborhood information,

i.e., it knows the set of nodes that are at most three-hops away and the locations of these

nodes, it can determine all the edges that intersect each of its incident edges. Thus,

each node has sufficient information to locally perform the computation in the EPND

algorithm and to simulate face routing in the virtual plane graph of a quasi unit disk

graph with ε ≥ 1/
√

2.

6.2 Virtual-Face-Traversal-For-QUDG-With-Three-

Hop-Info

Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info is a simple virtual face routing

protocol for quasi unit disk graphs with ε ≥ 1/
√

2. It assumes that nodes have three-hop

neighbor information, so that computing the next virtual edge along the boundary of

the current virtual face is done locally at a single node. The main idea of Virtual-Face-

Traversal-For-QUDG-With-Three-Hop-Info is the same as for the Virtual-Face-Traversal-

For-UDG-With-Two-Hop-Info protocol. At each step during the routing process, the
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packet is initially at the beginning node of the network edge that contains the current

virtual edge. The node calls the EPND algorithm to compute the ending point of the

current virtual edge and the network edge containing the next virtual edge along the

boundary of the current virtual face. It then checks whether there is a point on the

current virtual edge that is closer to the destination than the current starting point is.

If so, the traversal switches to the next virtual face. Otherwise, the packet continues

to travel along the boundary of the current virtual face. In both cases, the packet is

forwarded to the beginning node of the network edge containing the next virtual edge to

be traversed.

Most parts of the Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info protocol

are the same as the Virtual-Face-Traversal-For-UDG-With-Two-Hop-Info protocol. The

main differences are in the implementation of the initialization algorithm and the EPND

algorithm.

At the source node or when a new starting point is found, INIT-QUDG3HOP is called

to compute the network edge that contains the first virtual edge on the boundary of the

virtual face to be traversed and to set up the packet header. The high-level code of INIT-

QUDG3HOP is shown in Figure 6.2, which is almost the same as INIT-UDG2HOP. The

implementation of line 2 of INIT-QUDG3HOP is slightly different. To find the network

edge that contains the first virtual edge in clockwise order around p starting from the line

segment between p and packet.destination, the current node considers all the edges that

contain point p. When the starting point p is a virtual node, the current node needs to

know all the edges intersecting p. From Corollary 6.3, this requires that the node knows

three-hop neighbor information. Therefore, the current node considers the edges in its

three-hop neighborhood that intersect p. The other difference is that there is one more

field, packet.transit path, in the packet header. This field is used to route the packet from

the current node to the beginning node of packet.next edge.

From Corollary 6.3 and the definition of face routing, we have the following result



Chapter 6. Routing in Quasi Unit Disk Graphs 58

Algorithm INIT-QUDG3HOP(p)

. Input: p, the starting point of the virtual face to be traversed

. Executed by a node that currently holds the packet and that has an incident edge containing p

(which may be any point on this edge including both endpoints).

. It computes the network edge that contains the first virtual edge along the boundary of the virtual

face and sets up packet header.

. It requires that the node has three-hop neighbor information.

1 begin

2 (v1, v2) ← the network edge containing the first edge in clockwise order around p starting from

the line segment between p and packet.destination.

3 packet.next edge ← (v1, v2)

4 packet.last point ← p

5 packet.distance ← the distance from p to packet.destination

6 packet.transit path ← a path from the current node to v1 . at most 3 hops

7 end

Figure 6.2: Algorithm INIT-QUDG3HOP
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similar to Proposition 5.4.

Proposition 6.4. When INIT-QUDG3HOP returns, packet.next edge is the edge that

contains the first virtual edge on the boundary of the virtual face to be traversed, and

packet.last point is the starting point on that virtual face.

Similarly, to implement EPND, node u considers the edges in its three-hop neighbor-

hood to find the virtual or real node on (α, v) that is closest to α. From Corollary 6.3,

one endpoint of each edge crossing (α, v) is within two hops of node u. Therefore, EPND

can be performed locally at node u.

The path π returned by EPND is used to route the packet to the beginning node of

packet.next edge. It contains at most three hops, and it is assigned to packet.transit path

after EPND returns. The current node u removes the first node in packet.transit path,

which is u, and forwards the packet to the new first node in packet.transit path. If that

node is not the beginning node of packet.next edge, it continues to forward the packet

along the path in packet.transit path.

Alternatively, we can avoid using the extra packet header field packet.transit path in

this algorithm. Instead, the nodes on the path from the current node to the beginning

node of packet.next edge may compute the path on the fly. Each node has sufficient

information to carry out this computation locally. Therefore, it is a tradeoff between

communication overhead and computation time.

The code for Algorithm Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info is

shown in Figure 6.3, which is the main algorithm of the protocol.

Theorem 6.5. Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info simulates face

routing in the virtual plane graph of connected quasi unit disk graphs with ε ≥ 1√
2
.

Proof. As in the proof of Theorem 5.5, it suffices to prove that the sequence consisting of

the beginning node of each successive value of packet.next edge is F (π), where π denotes
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Algorithm Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info

. Performed by node u, the node that currently holds the packet.

. The information stored in the packet header is:

• packet.destination, the destination node of the packet;

• packet.next edge, the network edge containing the next virtual edge;

• packet.last point, the ending point of the previous virtual edge or the starting point on the

current virtual face if packet.next edge contains the first virtual edge on that face;

• packet.transit path: a path from the current node to the beginning node of packet.next edge;

and

• packet.distance, the distance from the starting point of the current virtual face to the

destination node.

1 begin

2 if u is packet.destination then

3 release the packet; return

4 if packet.destination is a neighbor of u then

5 forward the packet to packet.destination; return

6 if u is not the beginning node of packet.next edge then

. the last node in packet.transit path is the beginning node of packet.next edge

7 update packet.transit path by removing its first node

8 forward the packet to the first node in packet.transit path; return

9 let v denote the ending node of packet.next edge . u is the beginning node of packet.next edge

10 EPND((u, v), packet.last point, β, (w, x), π)

11 d ← shortest distance from a point on edge (packet.last point, β) to packet.destination

12 if d < packet.distance then . switch faces

13 p ← the closest point to packet.destination on edge (packet.last point, β)

14 INIT-QUDG3HOP(p)

15 if u is the beginning node of packet.next edge then

16 Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info

17 return

18 else

19 packet.next edge ← (w, x)

20 packet.last point ← β

21 packet.transit path ← π . the last node in π is the beginning node of packet.next edge

. route the packet to the beginning node of packet.next edge

22 update packet.transit path by removing its first node

23 forward the packet to the first node in packet.transit path

24 return

25 end

Figure 6.3: Algorithm Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info
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the virtual path obtained by applying face routing in the virtual plane graph and F (π)

is defined in Chapter 4.

At the source node or when a new starting point is found, INIT-QUDG3HOP is

called to compute the first virtual edge. From Corollary 6.3 and the definition of face

routing, when INIT-QUDG3HOP returns, packet.next edge is the edge that contains the

first virtual edge on the boundary of the virtual face to be traversed. At the beginning

node of each successive value of packet.next edge, EPND is called to compute the next

edge. From Proposition 4.3, the output (w, x) from EPND is the edge containing the

next virtual edge along the boundary of the current virtual face. If no new starting point

is found, (w, x) is assigned to packet.next edge. Otherwise, the traversal switches to the

next virtual face. Therefore, during the traversal, packet.next edge is always the edge

that contains each virtual edge in the virtual path π. Hence, the sequence of beginning

nodes of packet.next edge is F (π). Thus Virtual-Face-Traversal-For-QUDG-With-Three-

Hop-Info simulates face routing in the virtual plane graph of connected quasi unit disk

graphs with ε ≥ 1√
2
.

6.3 Virtual-Face-Traversal-For-QUDG-With-Two-

Hop-Info

Analogous to the second protocol for unit disk graphs, Virtual-Face-Traversal-For-

QUDG-With-Two-Hop-Info is another routing protocol for quasi unit disk graphs that

applies the virtual face routing approach. It assumes that nodes have only two-hop

neighbor information. From our analysis of the geometric properties of quasi unit disk

graphs, with only two-hop neighbor information, a node cannot find all the edges crossing

its incident edges. Thus, the beginning node of packet.next edge cannot perform EPND

locally as in the Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info protocol.

However, we will show that to compute the ending point of the current virtual edge
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and the edge containing the next virtual edge, the current node does not need to know

all the crossing edges. Let edge (u, v) denote packet.next edge, and let α denote the

beginning point of the current virtual edge. If the closest point to α at which an edge

crosses (α, v) is between α and the midpoint of (u, v), then, from Lemma 6.2, node u

knows all the edges crossing (α, v) at that point. In this case, node u can complete the

computation with its local information.

On the other hand, if node u does not see any edge crossing (α, v) at a point between

α and the midpoint m of (u, v), no such an edge exists. The closest point to α at which

an edge crosses (α, v) must be between m and v. By Lemma 6.2, all edges crossing (α, v)

between m and v are known to node v. Therefore, in this case, node v can complete

the computation with its local information. Moreover, if node v does not see any edge

crossing (α, v), no such an edge exists. In this case, the ending point of the current virtual

edge is v and the edge containing the next virtual edge is the next edge after (v, u) in

clockwise order around v. Thus, in both cases, node v can complete the computation

with its local information.

Therefore, in Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info, the computa-

tion of finding the network edge that contains the next virtual edge is carried out either

entirely by the beginning node of packet.next edge or by both the beginning node and

the ending node of packet.next edge, and both nodes perform the computation with only

their local information.

Now we describe this protocol in more detail. At the beginning of the routing pro-

cess, the source node s creates a packet containing the packet destination and calls

INIT-QUDG2HOP(s) to initialize the rest of the packet header. The INIT-QUDG2HOP

algorithm computes the edge containing the first virtual edge along the boundary of the

virtual face to be traversed. This algorithm is also executed at an intermediate node

when a new starting point is found. The input of INIT-QUDG2HOP is the starting

point of the virtual face to be traversed. The code for the INIT-QUDG2HOP algorithm
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is shown in Figure 6.4.

Algorithm INIT-QUDG2HOP(p)

. Input: p, the starting point of the virtual face to be traversed

. Executed by a node that currently holds the packet and that has an incident edge containing p.

. It computes the network edge that contains the first virtual edge along the boundary of the virtual

face and sets up packet header.

. It requires that the node has two-hop neighbor information.

1 begin

2 (v1, v2) ← the network edge containing the first edge in clockwise order around p starting from

the line segment between p and packet.destination.

3 packet.next edge ← (v1, v2)

4 packet.last point ← p

5 packet.distance ← the distance from p to packet.destination

6 end

Figure 6.4: Algorithm INIT-QUDG2HOP

The computation of the network edge that contains the next virtual edge along the

boundary of the current virtual face begins when the node currently holding the packet

is the beginning node of packet.next edge. Let (u, v) be the edge packet.next edge, and

let α be the point packet.last point. Node u checks whether it sees any edge that crosses

(α, v) at a point between α and the midpoint of (u, v). If so, it assigns to β the closest

point to α at which an edge crosses (α, v) and assigns to (w, x) the network edge that

contains the next virtual edge after (β, α) in clockwise order around β. Otherwise, it just

forwards the packet to node v.

If node v receives the packet, it checks whether it sees any edge crossing (α, v). If

so, it assigns to β the closest point to α at which an edge crosses (α, v) and assigns to

(w, x) the network edge that contains the next virtual edge after (β, α) in clockwise order

around β. Otherwise, it assigns v to β and assigns to (w, x) the next edge after (v, u) in

clockwise order around v.
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After β is determined, either at node u or node v, the current node determines

whether the traversal should switch to the next virtual face or not. The current node

computes the shortest distance from points on (α, β) to the destination. If it is less than

packet.distance, the distance from the starting point of the current virtual face to the

destination, face switching occurs. The new starting point p is the closest point to the

destination on (α, β). Note that p 6= α, because α is either the current starting point, in

which case its distance to the destination is equal to packet.distance, or the ending node

of the previous virtual edge, in which case if α is closer to the destination, face switching

would have occurred when the packet traversed the previous virtual edge. The current

node calls INIT-QUDG2HOP(p) to set up packet header. If the distance from (α, β) to

the destination is not less than packet.distance, the packet will continue to travel along

the boundary of the current virtual face. In this case, the current node assigns β and

(w, x) to packet.last point and packet.next edge, respectively.

From the above description and the definition of face routing, we get the following

result.

Proposition 6.6. When no face switching occurs, the new value of packet.last point is

the ending node of the current virtual edge and the new value of packet.next edge is the

edge that contains the next virtual edge along the boundary of the same virtual face.

Finally, after the new value of packet.next edge has been determined and this field

is updated, the current node forwards the packet to the beginning node of (the up-

dated) packet.next edge. It is possible that the beginning node of packet.next edge is

the current node. In this case, no forwarding is needed: the current node just executes

Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info again. If the beginning node of

packet.next edge is not the current node, it is at most two hops away, because at least

one of the endpoints of packet.next edge is a neighbor of the current node. The packet

is forwarded to the beginning node of packet.next edge either directly or via the ending

node of packet.next edge.
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Notice that, as described above, in Virtual-Face-Traversal-For-QUDG-With-Two-

Hop-Info, whenever a packet is sent to node z, z is either the beginning node or the

ending node of packet.next edge. If z is the beginning node of packet.next edge, it per-

forms the computation of finding the next edge. There are two circumstances when z is

the ending node of packet.next edge. First, the packet is sent from the beginning node

of packet.next edge. In this case, z performs the computation of finding the next edge

as previously described. Second, the packet is sent from a node that is not an endpoint

of packet.next edge. This happens when that node has completed the computation of

finding the next edge and has updated packet.next edge. In this case, z just relays the

packet to the beginning node of packet.next edge. Therefore, when the ending node of

packet.next edge receives a packet, it must determine which action to perform. This

can be determined by checking whether the packet is sent from the beginning node of

packet.next edge or not.

The complete code for Algorithm Virtual-Face-Traversal-For-QUDG-With-Two-Hop-

Info is shown in Figure 6.5, which is the main algorithm of the protocol.

In the Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info protocol, whenever

INIT-QUDG2HOP is called, its computation is performed based on the local information

at the node that calls it. Therefore, it is critical whether that node has sufficient informa-

tion for the computation, specifically, whether that node knows all the edges that contain

the starting point p. We say that a node knows certain information if that information

can be inferred from the node’s local information.

In the following, we first show that the nodes that call INIT-QUDG2HOP do have

sufficient information for the computation. Thus, when INIT-QUDG2HOP returns, the

packet header fields are set correctly for the traversal on the current virtual face. Namely,

packet.next edge is the edge that contains the first virtual edge on the boundary of the

virtual face to be traversed, and packet.last point is the starting point on that virtual

face. Then, we will prove that Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info
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Algorithm Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info
. Performed by node z, the node that currently holds the packet.
. The information stored in the packet header is as follows:

• packet.destination, the destination node of the packet;

• packet.next edge, the network edge containing the next virtual edge;

• packet.last point, the ending point of the previous virtual edge or the starting point of the
current virtual face if packet.next edge contains the first virtual edge on that face; and

• packet.distance, the distance from the starting point of the current virtual face to the
destination node.

1 begin

2 if z is packet.destination then

3 release the packet; return
4 if packet.destination is a neighbor of z then

5 forward the packet to packet.destination; return
6 let (u, v) denote packet.next edge and let α denote packet.last point
7 if z is the beginning node of packet.next edge then

8 let m denote the midpoint of edge (u, v)
9 if α is between u and m and there exist edges crossing (α, v) at a point between α and m

then

10 β ← the closest point to α at which an edge crosses (α, v)
11 (w, x) ← the edge crossing (α, v) at β that contains the next virtual edge after (β, α)

in clockwise order around β . note that 6 αβx < 180◦

12 else

13 forward the packet to the ending node of packet.next edge; return
14 else . z is the ending node of packet.next edge

15 if the packet was not sent from the beginning node of packet.next edge then

16 forward the packet to the beginning node of packet.next edge; return
17 if there exist edges crossing (α, v) then

18 β ← the closest point to α at which an edge crosses (α, v)
19 (w, x) ← the edge crossing (α, v) at β that contains the next virtual edge after (β, α)

in clockwise order around β . note that 6 αβx < 180◦

20 else

21 β ← v

22 (w, x) ← the next edge after (v, u) in clockwise order around v

23 d ← shortest distance from a point on (α, β) to packet.destination
24 if d < packet.distance then . switch faces

25 p ← the closest point to packet.destination on (α, β)
26 INIT-QUDG2HOP(p)
27 else

28 packet.next edge ← (w, x)
29 packet.last point ← β

30 if z is the beginning node of packet.next edge then

31 Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info
32 return
33 else . route the packet to the beginning node of packet.next edge

34 let (u′, v′) be the value of packet.next edge
35 if u′ is a neighbor of z then . at least one of u′ and v′ is a neighbor of the current node z

36 forward the packet to u′; return
37 else

38 forward the packet to v′; return
39 end

Figure 6.5: Algorithm Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info
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simulates face routing in the virtual plane graph of connected quasi unit disk graphs

with ε ≥ 1√
2
, and therefore, it guarantees message delivery.

Proposition 6.7. In Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info, whenever

INIT-QUDG2HOP is called, the node that calls it knows all the edges that contain the

starting point p.

Proof. At the source node s, INIT-QUDG2HOP is called with s as the input. Node

s knows all the edges with s as one endpoint and, thus, has sufficient information to

perform the computation in INIT-QUDG2HOP.

At an intermediate node, INIT-QUDG2HOP is called when a new starting point p

is found. Let (u, v) be the value of packet.next edge before INIT-QUDG2HOP is called,

and let (α, β) be the current virtual edge contained in (u, v). The new starting point p

is on edge (α, β) and p 6= α. There are the following two cases: (i) β is between α and

the midpoint of (u, v); (ii) β is between the midpoint of (u, v) and v.

In the first case, since node u will find β and complete the computation of finding the

new value of packet.next edge, INIT-QUDG2HOP is called at node u. Node u knows all

the edges that contain point p, because p is between u and the midpoint of (u, v).

In the second case, since no edges crossing (α, v) at a point between α and the

midpoint of (u, v), node u will forward the packet to node v, which determines β and

p and then calls INIT-QUDG2HOP. If p is between the midpoint of (u, v) and v, then

node v knows all the edges that contain p. Otherwise p is strictly between α and the

midpoint of (u, v). In this case, the only edges that contain p are edge (u, v) and edge

(v, u), because there are no edges that cross (u, v) strictly between α and β. Node v

knows both edges.

Therefore, in all cases, the statement of this proposition is true.

Theorem 6.8. Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info simulates face

routing in the virtual plane graph of connected quasi unit disk graphs with ε ≥ 1√
2
.
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Proof. By Theorem 6.5, it suffices to prove that the sequence consisting of the successive

values of packet.next edge is the same in both Virtual-Face-Traversal-For-QUDG-With-

Three-Hop-Info and Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info algorithms.

At the source node s, packet.next edge is initialized by INIT-QUDG3HOP(s) in

Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info and by INIT-QUDG2HOP(s)

in Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info. In both cases,

packet.next edge is set to the first edge in clockwise order around s starting from

the line segment between s and packet.destination. Furthermore, packet.last point is

initialized to the source node s in both algorithms.

In Virtual-Face-Traversal-For-QUDG-With-Three-Hop-Info, packet.next edge and

packet.last point are updated at node u. If no face switching occurs, they are updated

with the edge (w, x) and the node β returned by EPND. Thus, from Proposition 4.3 and

Proposition 6.6, the new values of packet.next edge and packet.last point are the same

in both algorithms. If face switching occurs, it follows from Proposition 6.4 and Propo-

sition 6.7 that the new values of packet.next edge and packet.last point are the same in

both algorithms.

Therefore, the sequence consisting of the successive values of packet.next edge is the

same in both algorithms.



Chapter 7

Routing in Edge Dynamic Quasi

Unit Disk Graphs

In this chapter, we describe our protocol that applies the virtual face routing approach

for edge dynamic quasi unit disk graphs with ε ≥ 1√
2
. Recall that our Tethered-Traversal

protocol [21, 22] works for edge dynamic graphs that are always plane graphs. It uses

information about the packet path to deal with the changes of edges during routing. An

edge dynamic quasi unit disk graph is not, in general, a plane graph. Moreover, as in

static quasi unit disk graphs, extracting a connected spanning plane subgraph in an edge

dynamic quasi unit disk graph is not always possible, because a connected quasi unit

disk graph may not have a connected spanning plane subgraph. So, Tethered-Traversal

does not work in an arbitrary edge dynamic quasi unit disk graph.

In the following, we present a protocol, Virtual-Face-Traversal-With-Tether, for edge

dynamic quasi unit disk graphs, which combines the techniques in Tethered-Traversal

with the virtual face routing approach described in Chapter 4.

69



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 70

7.1 Virtual-Face-Traversal-With-Tether

Since an edge dynamic quasi unit disk graph is a quasi unit disk graph at each point

in time, we can apply a virtual face routing protocol, such as Virtual-Face-Traversal-

For-QUDG-With-Two-Hop-Info. In an edge dynamic graph, a new edge may split the

virtual face currently being traversed into two. If the packet is travelling on a newly

formed virtual face that does not contain a point that is closer to the destination, the

packet could be trapped on that virtual face. Virtual-Face-Traversal-With-Tether extends

Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info to edge dynamic quasi unit disk

graphs with ε ≥ 1/
√

2, using techniques in Tethered-Traversal. The idea is to store

information about the current virtual face in a field of the packet header, called the

tether , and then use this information to avoid such problems. If following the next edge

would cause the packet to loop back, that edge is ignored by the current node. Thus, the

use of the tether will keep the traversal on the edges that existed when the packet starts

to traverse the current virtual face and the new edges that do not cause problems.

Specifically, the tether stores the path followed by the packet on the current virtual

face. Each time the starting point of a new virtual face is determined, the tether is

initialized. As the traversal proceeds, additional nodes are appended to the tether. If the

network edge that contains the next virtual edge on the current virtual face intersects the

tether and forms a cycle whose direction is counterclockwise, the current node ignores

this edge and recomputes the next edge of the traversal. (Since the right-hand rule is

used to select the next edge, clockwise cycles are not a problem, as discussed in [22].)

Otherwise, the packet header is updated and the packet is forwarded to the beginning

node of the next edge. Figure 7.1 shows an example of a counterclockwise cycle formed

by a candidate next edge with the tether during the traversal.

Now we describe this protocol in detail. At the beginning of the routing process,

the source node s creates a packet containing the packet destination and calls INIT-

EDQUDG(s) to initialize the rest of the packet header. INIT-EDQUDG performs the
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Figure 7.1: (a) Traversal of the current virtual face. (b) New edge (w, x) forms a counter-

clockwise cycle with the tether, and packet is on the new virtual face F ′. (c)

Traversal continues on the virtual face intersected by the line to destination

by ignoring edge (w, x).

same initialization as INIT-QUDG2HOP, computing the edge that contains the first

virtual edge along the boundary of the virtual face to be traversed and initializing

packet.next edge, packet.last point, and packet.distance. In addition, INIT-EDQUDG also

initializes packet.tether, the field that stores the tether.

The tether is a sequence of real or virtual nodes, with the possible exception of the

starting point on the virtual face. The starting point on the virtual face is the input

parameter of INIT-EDQUDG, denoted by p, which may be a real or virtual node, or an

interior point on an edge. Conceptually, the traversal on the current virtual face starts at

the starting point p. As the tether grows, a cycle can be formed at any point on the path,

in particular, at the starting point p. If a cycle is formed at the starting point p, in order

to determine the direction of the cycle, we need to know the edge that contains the first

virtual edge in counterclockwise order around p starting from the line segment between

p and the destination at the starting of the traversal. We could use a separate field in

the packet header to store this edge, but for simplicity of the algorithm and its proof

of correctness, we make this edge part of the tether and store it in packet.tether. The
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details of how to determine the direction of a cycle using packet.tether will be described

later in this section.

Thus, the first node of the tether is the ending node of the edge that contains the first

virtual edge in counterclockwise order around p starting from the line segment between

p and packet.destination. The second node of the tether is always the starting point

p. This is illustrated in Figure 7.2 where d = packet.destination. The examples in this

figure indicate the initial value of packet.tether when the starting point p is a real node,

a virtual node, or an interior point point on an edge, respectively. The code for the

INIT-EDQUDG algorithm is shown in Figure 7.3.
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Figure 7.2: Initialization of packet.destination

After INIT-EDQUDG returns, the current node executes Algorithm Virtual-Face-

Traversal-With-Tether to route the packet. A large part of the computation is the same

as that in the Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info algorithm. Specif-

ically, the beginning node of packet.next edge, say, edge (u, v), tries to find β, the ending

node of the current virtual edge, and to find (w, x), the edge that contains the next

virtual edge along the boundary of the current virtual face. This is done by checking

its two-hop neighborhood for edges crossing (u, v) at a point between packet.last point

and the midpoint of (u, v). If it does not see any such edges, it forwards the packet to

node v. Then node v can determine β and (w, x) using its two-hop neighbor information.

Once β is identified, the current node checks whether there is a new starting point on
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Algorithm INIT-EDQUDG(p)

. Input: p, the starting point of the virtual face to be traversed

. Executed by a node that currently holds the packet and that has an incident edge containing p.

. It computes the network edge that contains the first virtual edge along the boundary of the virtual

face and sets up packet header.

. It requires that the node has two-hop neighbor information.

1 begin

2 packet.next edge ← the network edge containing the first edge in clockwise order around p

starting from (and including) the line segment between p and packet.destination

3 packet.last point ← p

4 packet.distance ← the distance from p to packet.destination

5 let (v2, v1) be the network edge containing the first edge in counterclockwise order around p

after the line segment between p and packet.destination

6 packet.tether ← v1, p

7 end

Figure 7.3: Algorithm INIT-EDQUDG

(α, β). If a new starting point is found, the current node calls INIT-EDQUDG and the

traversal proceeds to the next virtual face. So far the computation is the same as that

in Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info.

However, if a new starting point is not found, an additional procedure from the

tethered-traversal technique is performed. We say that edge (w, x) forms a cycle with

the tether if it intersects the tether excluding the first edge in the tether but including

p, the starting point. As illustrated in Figure 7.4, there are two cases depending on

the geometric relationship between (w, x) and the tether. In the first case, edge (w, x)

intersects the tether at a real or virtual node in the tether excluding the first node of

the tether. Let x′ be that node in the tether, let α′ be the previous node before x′ in

the tether, and let β ′ be the next node after x′ in the tether. We say that this cycle

is counterclockwise if edge (x′, w) is between the clockwise angle from (x′, α′) to (x′, β′)

around x′, i.e., the angle from (x′, α′) to (x′, w) is less than the angle from (x′, α′) to
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(x′, β′) in the clockwise direction around x′.

In the second case, edge (w, x) intersects an edge in the tether excluding its first edge.

Say, (w, x) intersects edge (α′, β′). Let q be the intersection point. Analogously, we say

that this cycle is counterclockwise if the angle from (q, α′) to (q, w) in the clockwise

direction around q is less than 180◦.
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Figure 7.4: Counterclockwise cycles formed by edge (w, x) with the tether

If edge (w, x) forms a counterclockwise cycle with the packet tether, the current

node updates its two-hop neighborhood information by removing the connection between

w and x. Then, it executes Virtual-Face-Traversal-With-Tether again to re-compute

the next edge. If edge (w, x) does not form a counterclockwise cycle with the packet

tether, the current node assigns (w, x) and β to packet.next edge and packet.last node,

respectively. Moreover, it updates packet.tether by adding node β to the end of its cur-

rent list. Then, as in Virtual-Face-Traversal-For-QUDG-With-Two-Hop-Info, the current

node routes the packet to the beginning node of packet.next edge if it is not that node.

The beginning node of packet.next edge continues the computation of finding the next

edge for the traversal.

The code for Algorithm Virtual-Face-Traversal-With-Tether is shown in Figure 7.5

and 7.6, which is the main algorithm of the protocol.
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Algorithm Virtual-Face-Traversal-With-Tether

. Performed by node z, the node that currently holds the packet.

. The information stored in the packet header is as follows:

• packet.destination, the destination node of the packet;

• packet.next edge, the network edge containing the next virtual edge;

• packet.last point, the ending point of the previous virtual edge or the starting point of the

current virtual face if packet.next edge contains the first virtual edge on that face;

• packet.distance, the distance from the starting point of the current virtual face to the

destination node; and

• packet.tether, a sequence of nodes that tracks the path followed by the packet along the

boundary of the current virtual face.

1 begin

2 if z is packet.destination then

3 release the packet; return

4 if packet.destination is a neighbor of z then

5 forward the packet to packet.destination; return

6 let (u, v) denote packet.next edge and let α denote packet.last point

7 if z is the beginning node of packet.next edge then

8 let m denote the midpoint of edge (u, v)

9 if α is between u and m and there exist edges crossing (α, v) at a point between α and m

then

10 β ← the closest point to α at which an edge crosses (α, v)

11 (w, x) ← the edge crossing (α, v) at β that contains the next virtual edge after (β, α)

in clockwise order around β . note that 6 αβx < 180◦

12 else

13 forward the packet to the ending node of packet.next edge; return

14 else . z is the ending node of packet.next edge

15 if the packet is not sent from the beginning node of packet.next edge then

16 forward the packet to the beginning node of packet.next edge; return

17 if there exist edges crossing (α, v) then

18 β ← the closest point to α at which an edge crosses (α, v)

19 (w, x) ← the edge crossing (α, v) at β that contains the next virtual edge after (β, α)

in clockwise order around β . note that 6 αβx < 180◦

20 else

21 β ← v

22 (w, x) ← the next edge after (v, u) in clockwise order around v

(Continued on the next page)

Figure 7.5: Algorithm Virtual-Face-Traversal-With-Tether
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Algorithm Virtual-Face-Traversal-With-Tether (Con’t)

23 d ← shortest distance from a point on (α, β) to packet.destination

24 if d < packet.distance then . switch faces

25 p ← the closest point to packet.destination on (α, β)

26 INIT-EDQUDG(p)

27 else

28 if (β, x) forms a counterclockwise cycle with packet.tether then

29 remove (w, x) and (x,w) from the two-hop neighborhood of node z

30 Virtual-Face-Traversal-With-Tether

31 return

32 else

33 packet.next edge ← (w, x)

34 packet.last point ← β

35 packet.tether ← packet.tether, β

36 if z is the beginning node of packet.next edge then

37 Virtual-Face-Traversal-With-Tether

38 return

39 else . route the packet to the beginning node of packet.next edge

40 let (u′, v′) be the value of packet.next edge

. at least one of u′ and v′ is a neighbor of the current node z

41 if u′ is a neighbor of z then

42 forward the packet to u′; return

43 else

44 forward the packet to v′; return

45 end

Figure 7.6: Algorithm Virtual-Face-Traversal-With-Tether (Con’t)
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7.2 Conditions for Guaranteeing Message Delivery

Now we discuss the conditions under which Virtual-Face-Traversal-With-Tether works

correctly. First, the delivery guarantee condition for Tethered-Traversal requires that a

stable connected spanning subgraph exists during the entire traversal of each face [22].

This is also needed for Virtual-Face-Traversal-With-Tether. Second, for the virtual face

traversal approach to work correctly, when an edge is assigned to packet.next edge, it

must remain connected until packet.next edge is updated. We can bound this time

period as follows. Once packet.next edge is determined, the current node sends the

packet to the beginning node of packet.next edge, either directly or via the ending node

of packet.next edge, and during the computation of the next edge, the packet may be

forwarded along packet.next edge. Hence, the time between two successive updates of

packet.next edge is at most the time needed for three transmissions plus a small amount

of the computation.

Therefore, we have the following conditions for message delivery guarantee using

Virtual-Face-Traversal-With-Tether.

Condition 7.1. A stable connected spanning subgraph of the network graph exists

during the entire traversal of each virtual face.

Condition 7.2. If an edge is assigned to packet.next edge, it remains connected for at

least the time needed for three transmissions plus a small amount of computation.

7.3 Proof of Correctness of Virtual-Face-Traversal-

With-Tether

Now we will prove that Virtual-Face-Traversal-With-Tether guarantees message delivery

in edge dynamic quasi unit disk graphs with ε ≥ 1√
2

under Condition 7.1 and 7.2. We

begin by introducing some definitions. Suppose that, at time t, a packet starts traversing
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a virtual face F in the edge dynamic quasi unit disk graph. By Condition 7.1, a stable

connected spanning subgraph G′ exists during the entire traversal of F . F is contained

within a virtual face F ′ of G′. The main idea of the proof is to show that the packet

travels roughly along the boundary of F ′.

Let WF ′ denote the traversal of the boundary of F ′ using the right-hand rule. This

consists of a sequence of directed edges. We observe the following geometric properties

regarding the edges in WF ′ .

Proposition 7.1. Let (α, β) and (β, γ) be two consecutive edges in WF ′, then, any edge

that intersects both β and the interior of the clockwise angle around β from (β, α) to

(β, γ) intersects the interior of F ′.

Proposition 7.2. If edge (α, β) intersects an edge in WF ′ at β, the interior of (α, β) is

in the interior of F ′, and e is the first edge in WF ′ in clockwise order around β starting

from (β, α) then, any edge that intersects both β and the interior of the clockwise angle

around β from (β, α) to e intersects the interior of F ′.

Furthermore, notice that since F ′ is a virtual face of a connected spanning subgraph

of the network graph, there cannot exist any real nodes inside F ′. Thus, we have the

following observations.

Proposition 7.3. If (α, v) intersects the interior of F ′ and v is a real node, then (α, v)

must intersect WF ′ at a point that is not α.

Proposition 7.4. For any virtual or real edge (α, β) whose interior is in the interior

of F ′, the network edge (u, v) that contains (α, β) must intersect WF ′ at least twice, and

at least one intersection point is between u and α, and at least one intersection point is

between v and β.

Let (β(k−1), β(k)) denote the kth edge of packet.tether, and let packet.next edge(k) de-

note the kth value of packet.next edge, for k ≥ 1, if they exist. Note that (β (k), β(k+1))



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 79

is contained in the real edge packet.next edge(k) and intersects packet.next edge(k+1) at

β(k+1). From observation of the algorithm, (β(0), β(1)) and packet.next edge(1) are set in

INIT-EDQUDG. The algorithm computes β(k+1) and packet.next edge(k+1) together.

We will prove the following properties of packet.tether and packet.next edge.

Lemma 7.5. Suppose that a packet starts traversing a virtual face F with starting point

p and let F ′ be the stable virtual face containing F . Let k ≥ 1. Before the traversal

switches to another virtual face, if (β(k−1), β(k)) and packet.next edge(k) exist, the following

properties hold:

(a) Any edge in the stable subgraph G′ that intersects β(k) does not intersect the interior

of the clockwise angle around β(k) from (β(k), β(k−1)) to packet.next edge(k);

(b) If k ≥ 2, then either (β(k−1), β(k)) is contained in an edge in WF ′, or the interior of

(β(k−1), β(k)) is in the interior of F ′.

Proof. We will prove the lemma by induction on k.

Base case From line 2 of INIT-EDQUDG, packet.next edge(1) is the network edge that

contains the first edge in clockwise order around the starting point p starting from (and

including) the line segment between p and packet.destination, as shown in Figure 7.7.

From line 5-6 of INIT-EDQUDG, β(1) = p and (β(0), β(1)) contains the first edge in

counterclockwise order around p after the line segment between p and packet.destination.

Therefore, if an edge intersects p and is a stable edge in G′, it does not intersect the

interior of the clockwise angle around p from (β(0), β(1)) to packet.next edge(1). Hence,

(a) is true for k = 1.

Let (u, v) denote packet.next edge(1), and let β be the point closest to p at which

some edge intersects (p, v). Thus, (p, β) is on the boundary of F . Since F is contained

within F ′, (p, β) is within F ′. Furthermore, since β is the closest intersection point to

p, no nodes on the boundary of F ′ are on the interior of (p, β). Thus, either (p, β) is
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contained in an edge in WF ′ or the interior of (p, β) is in the interior of F ′. Let (w, x) be

the network edge that contains the first edge in clockwise order around β starting from

(β, p). Thus, any stable edge in G′ that intersects β does not intersect the interior of the

clockwise angle around β from (β, p) to (w, x).

Consider the computation to determine the ending node β(2) of the second edge of the

tether and packet.next edge(2). From the algorithm, if there is some point on (p, β) that is

closer to packet.destination than p is, the traversal will be switched to another virtual face.

Otherwise, (w, x) will be a candidate for packet.next edge(2), and it is packet.next edge(2)

if and only if it does not form a counterclockwise cycle with the tether (excluding its

first edge). From the definition of counterclockwise cycles, if a candidate edge forms a

counterclockwise cycle with the tether, either it intersects a node in the tether excluding

its first and last nodes, or it intersects an edge in the tether excluding its first edge.

Since the tether currently contains only one edge, the tether excluding its first edge is

empty. Thus, β(2) = β and packet.next edge(2) = (w, x). Also notice that β(1) = p, so

(β(1), β(2)) = (p, β). Therefore, properties 1 and 2 are true for k = 2.

Induction step Assume that the lemma holds for all 1 ≤ i ≤ k, where k ≥ 2. By the
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induction hypothesis, either (β(k−1), β(k)) is contained in an edge in WF ′ , or the interior

of (β(k−1), β(k)) is in the interior of F ′. So β(k) is either on the boundary of F ′ or is inside

F ′. Let (u, v) denote packet.next edge(k), which intersects (β(k−1), β(k)) at β(k).

Suppose β(k) is on the boundary of F ′ and the rest of (β(k), v) is outside F ′. We

consider two cases: (a) (β(k−1), β(k)) is contained in an edge in WF ′ , and (b) the interior

of (β(k−1), β(k)) is in the interior of F ′. These are illustrated in Figure 7.8.
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Let e be the first edge in WF ′ in clockwise order around β(k) starting from (β(k), β(k−1)).

From Proposition 7.1 and 7.2, any edge that intersects β(k) and the interior of the clock-

wise angle around β(k) from (β(k), β(k−1)) to e intersects the interior of F ′. Therefore,

(β(k), v) must be outside the clockwise angle around β(k) from (β(k), β(k−1)) to e. Then,

edge e intersects β(k) and also intersects the interior of the clockwise angle around β(k)

from (β(k), β(k−1)) to (β(k), v). Since every edge in WF ′ is contained in a stable edge in G′,

there is a stable edge in G′ (containing e) that intersects β(k) and intersects the interior

of the clockwise angle around β(k) from (β(k), β(k−1)) to (β(k), v), which is contained in

packet.next edge(k). This contradicts the induction hypothesis (a). Therefore, (β(k), v)

cannot be outside F ′. Thus, either (i) (β(k), v) intersects the interior of F ′, or (ii) (β(k), v)

overlaps an edge in WF ′ .
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Figure 7.9 gives some examples of the geometric relationship between (β(k−1), β(k))

and packet.next edge(k). In examples (a) and (b), (β(k−1), β(k)) is contained in an edge in

WF ′ , and in (c) and (d), the interior of (β(k−1), β(k)) is in the interior of F ′. Examples (a)

and (c) correspond to case (i) where (β(k), v) intersects the interior of F ′, and examples

(b) and (d) correspond to case (ii) where (β(k), v) overlaps an edge in WF ′ .
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Figure 7.9: Induction step of the proof of Lemma 7.5

If (β(k), v) belongs to case (i), by Proposition 7.3, (β(k), v) must intersect WF ′ at a

point that is not β(k). Let β ′ be the intersection point of (β(k), v) and WF ′ that is closest

to β(k). If (β(k), v) belongs to case (ii), let β ′ be the next node in WF ′ after β(k). Hence,

either the interior of (β(k), β′) is in the interior of F ′, or (β(k), β′) is contained in an edge
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in WF ′ . In both cases, let (w′, x′) be the network edge containing the first edge in WF ′

in clockwise order around β ′ starting from (β ′, β(k)).

We claim that (w′, x′) does not form a counterclockwise cycle with the tether. To

obtain a contradiction, suppose (w′, x′) forms a counterclockwise cycle with the tether.

Then, (w′, x′) either intersects a node β(i) in the tether, where 1 ≤ i < k, or intersects

the interior of an edge (β(i−1), β(i)) in the tether, where 1 < i ≤ k. In the former case,

by the definition of counterclockwise cycles, (w′, x′) also intersects the interior of the

clockwise angle around β(i) from (β(i), β(i−1)) to (β(i), β(i+1)). However, this contradicts

the induction hypothesis (a) since (w′, x′) is a stable edge in G′. In the latter case, from

the induction hypothesis (b), either edge (β(i−1), β(i)) is contained in an edge in WF ′ , or

the interior of (β(i−1), β(i)) is in the interior of F ′. Thus, the stable edge (w′, x′) either

intersects the interior of an edge in WF ′ or intersects the interior of F ′. This contradicts

the definition of virtual faces. Therefore, (w′, x′) does not form a counterclockwise cycle

with the tether.

Now, consider the computation to determine β(k+1) and packet.next edge(k+1). Notice

that β ′ is the closest point to β(k) at which a stable edge intersects (β(k), v), and (w′, x′)

contains the first stable edge in clockwise order around β ′ starting from (β ′, β(k)). So,

either packet.next edge(k+1) = (w′, x′), or it is a nonstable edge that intersects the interior

of (β(k), β′), or it is a nonstable edge that intersects β ′ and is between (β ′, β(k)) and (w′, x′)

in the clockwise direction around β ′.

In all cases, (β(k), β(k+1)) is contained in (β(k), β′). Therefore, either the interior of

(β(k), β(k+1)) is in the interior of F ′, or (β(k), β(k+1)) is contained in an edge in WF ′ .

Furthermore, any stable edge that intersects β(k+1) does not intersects the interior of the

clockwise angle around β(k+1) from (β(k), β(k+1)) to packet.next edge(k+1). Therefore, the

lemma holds for k + 1.

Lemma 7.5 shows that before the traversal switches to another virtual face, the packet

tether excluding its first edge is within F ′ and never crosses the boundary of F ′. Next,
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we will prove that the traversal eventually has to switch to another virtual face until

the destination is reached. The proof is established through a series of propositions and

lemmas.

Proposition 7.6. For k ≥ 2, if the clockwise angle around β(k) from (β(k), β(k−1)) to

(β(k), β(k+1)) is at least 180◦, then β(k) is a real node.

Proof. Proof by contradiction. Recall that every node in the packet tether is either a

real or virtual node, with the only possible exception of β(1) that is the starting point p,

which may be a real node, a virtual node, or an interior point on an edge, as shown in

Figure 7.2.

Suppose β(k) is a virtual node, and the clockwise angle around β(k) from (β(k), β(k−1))

to (β(k), β(k+1)) is at least 180◦. Let (u, v) and (w, x) be the network edges that contain

(β(k−1), β(k)) and (β(k), β(k+1)), respectively. Then, (u, v) and (w, x) intersect at β(k),

which is an interior point on both edges. This is illustrated in Figure 7.10.
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Consider the computation of packet.next edge(k). Starting from (β(k), β(k−1)) and pro-

ceeding clockwise around β(k), we hit (β(k), w) before (β(k), x). If edge (β(k), w) does not

form a counterclockwise cycle with the packet tether, (x,w) will be packet.next edge(k)

and (β(k), β(k+1)) should be contained in (β(k), w). Then, the clockwise angle around
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β(k) from (β(k), β(k−1)) to (β(k), β(k+1)) is less than 180◦. This contradicts our supposi-

tion. If edge (β(k), w) does form a counterclockwise cycle with the packet tether, from

lines 28-29 of Virtual-Face-Traversal-With-Tether, edges (x,w) and (w, x) are ignored in

the subsequent computation of packet.next edge(k), which contains (β(k), β(k+1)). Thus,

(β(k), β(k+1)) cannot be contained in (w, x). This also contradicts our supposition.

Therefore, we have shown that if β(k) is not a real node, the clockwise angle around

β(k) from (β(k), β(k−1)) to (β(k), β(k+1)) is less than 180◦. Hence the proposition is true.

Next, we define a point β ′(k) on the boundary of F ′, and we will show that the first k

edges of the tether followed by β ′(k) followed by part of the boundary of F ′ followed by

part of the line between p and the destination form a region inside F ′. More precisely,

for k ≥ 2, if β(k) exists, then from Lemma 7.5 (b), either (β(k−1), β(k)) is contained in an

edge in WF ′ , or the interior of (β(k−1), β(k)) is in the interior of F ′. In the former case, let

β′(k) = β(k). In the latter case, let (u, v) denote the underlying network edge containing

(β(k−1), β(k)). From Proposition 7.4, there is at least one intersection point of (u, v) and

WF ′ between β(k) and v. Let β ′(k) be the intersection point between β(k) and v that is

closest to β(k) (including β(k)).

From the definition of β ′(k), we can get the following property.

Proposition 7.7. For k ≥ 2, if β ′(k) 6= β(k), then β(k) is a virtual node.

Proof. Suppose β(k) is a real node. From Lemma 7.5 (b), any node in the tether except

the first one is either on the boundary of F ′ or inside F ′. Thus, β(k) is on the boundary

of F ′ since no real node is inside F ′. Furthermore, either (β(k−1), β(k)) is contained in

an edge in WF ′ , or the interior of (β(k−1), β(k)) is in the interior of F ′. If (β(k−1), β(k)) is

contained in an edge in WF ′ , then β ′(k) = β(k) by the definition of β ′(k). If the interior

of (β(k−1), β(k)) is in the interior of F ′, then β(k) = v where (u, v) denote the underlying

network edge containing (β(k−1), β(k)). Thus, from the definition of β ′(k), β′(k) = β(k) = v.

Therefore, the proposition holds.
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Recall that F ′ is intersected by the line segment from the starting point p to

packet.destination, and F ′ is a virtual face in the stable connected spanning subgraph

G′. Therefore, there is at least one point other than p at which the line segment from p

to packet.destination intersects WF ′ . Let p′ be such an intersection point that is closest

to p. Notice that in our notation, letters with a prime, e.g. β ′(k) and p′, denote points on

the boundary of F ′.

Proposition 7.8. If the tether has length at least 2, then the line segment from p to p′

is not on the boundary of F ′.

Proof. Suppose the tether has length at least 2 and the line segment from p to p′ is on

the boundary of F ′. Let (u, v) denote the underlying network edge on the boundary of

F ′, where p′ is between p and node v. Then, all points on (p, v) excluding p are closer to

the destination than p is.

From line 2 of INIT-EDQUDG, packet.next edge(1) is the network edge that contains

the first edge in clockwise order around the starting point p = β(1) starting from (and

including) the line segment between p and packet.destination. Thus, packet.next edge(1) =

(u, v), and β(2) is a virtual or real node on (p, v) after p. So β(2) is closer to the destination

than p is. This is a contradiction, because if β(2) exists, it cannot be closer to the

destination than p is. Hence, the proposition holds.

Proposition 7.9. If the tether has length at least 2, then (β(2), β′(2)) does not intersect

the interior of the line segment between p and p′.

Proof. Suppose the tether has length at least 2, i.e., β(2) exists, and (β(2), β′(2)) intersects

the interior of the line segment between p and p′. By the definition of β ′(k), β(1), β(2),

and β′(2) are collinear, and β(2) is between β(1) = p and β ′(2). Thus, β(2) is on the line

segment between p and p′. Since β(2) 6= p, β(2) is closer to the destination than p is. This

is a contradiction, because if β(2) exists, it cannot be closer to the destination than p is.

Hence, the proposition holds.
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Proposition 7.10. If the tether has length at least 2, then the part of the tether from

p to β(2), (β(2), β′(2)), the part of WF ′ from β ′(2) to p′, and the line segment from p′ to p

form a closed curve that is the boundary of a region whose interior is entirely contained

in the interior of F ′.

Proof. Suppose the tether has length at least 2. From Lemma 7.5 (b), either (β (1), β(2))

is contained in an edge in WF ′ or the interior of (β(1), β(2)) is in the interior of F ′.

In the former case, as illustrated in Figure 7.11, the line segment between p and p′

divides F ′ into two regions, because it intersects F ′ and is not on the boundary of F ′ by

Proposition 7.8. The part of the tether from p to β(2), (β(2), β′(2)), the part of WF ′ from

β′(2) to p′, and the line segment from p′ to p is the boundary of one of these two regions,

shown as the darker-shaded area in Figure 7.11.
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In the latter case, as illustrated in Figure 7.12, packet.next edge(1) divides F ′ into two

regions, and one of them is intersected by the line segment from p to p′, which further

divides that region into two subregions. The part of the tether from p to β (2), (β(2), β′(2)),

the part of WF ′ from β ′(2) to p′, and the line segment from p′ to p is the boundary of one
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of the resulting subregions. See the darkest area in Figure 7.12.

Proposition 7.11. Let k ≥ 2. If the tether has length at least k + 1, if (β (i), β′(i)) does

not intersect the interior of the line segment between p and p′ for all 2 ≤ i ≤ k + 1, and

if the part of the tether from p to β(k), (β(k), β′(k)), the part of WF ′ from β ′(k) to p′, and

the line segment from p′ to p form a closed curve that is the boundary of a region whose

interior is entirely contained in the interior of F ′, then β ′(k+1) 6= β′(k), β′(k+1) is on the

part of WF ′ from β ′(k) to p′, and the part of the tether from p to β(k+1), (β(k+1), β′(k+1)),

the part of WF ′ from β ′(k+1) to p′, and the line segment from p′ to p form a closed curve

that is the boundary of a region whose interior is entirely contained in the interior of F ′.

Proof. Assume all the conditions in the proposition hold. Let Rk denote the region whose

boundary consists of the part of the tether from p to β(k), (β(k), β′(k)), the part of WF ′

from β ′(k) to p′, and the line segment from p′ to p. See Figure 7.13 for an example where

F ′ is an interior virtual face of the stable subgraph G′, and see Figure 7.14 for an example

where F ′ is the outer virtual face of G′.
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Let (w, x) denote the network edge containing (β(k), β(k+1)). First suppose β ′(k) = β(k).

See Figure 7.15 for an example in this case where k = 2. Recall that β ′(k) is a point
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Figure 7.15: Example for the proof of Proposition 7.11 where k = 2

on WF ′ . Let (β(k), γ) be the first edge in WF ′ in clockwise order around β(k) after

(β(k), β(k−1)). Since the clockwise angle around β(k) from (β(k), β(k−1)) to (β(k), γ) is in

Rk and the boundary of Rk contains (β(k−1), β(k)) followed by the part of WF ′ from β ′(k)

to p′, (β(k), γ) is on the part of WF ′ from β ′(k) to p′. From Lemma 7.5 (a), (β(k), γ)

does not intersect the interior of the clockwise angle around β(k) from (β(k), β(k−1)) to

(β(k), β(k+1)). Therefore, (β(k), β(k+1)) is either contained in (β(k), γ) or is strictly between

(β(k), β(k−1)) and (β(k), γ) in clockwise order around β(k).
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If (β(k), β(k+1)) is contained in (β(k), γ), then β ′(k+1) = β(k+1) by definition. Figure 7.15

is an example of this case for k = 2. In this case, (β(k), β(k+1)) is on the boundary of

Rk. Thus, Rk+1 = Rk and the proposition holds. More formally, β ′(k+1) 6= β′(k) since

β′(k+1) = β(k+1), β′(k) = β(k), and β(k+1) 6= β(k). Furthermore, β ′(k+1) is on the part of

WF ′ from β ′(k) to p′, and the part of the tether from p to β(k+1) is the same as the part of

the tether from p to β(k), (β(k), β′(k)), plus the part of WF ′ from β ′(k) to β(k+1) = β′(k+1).

Therefore, the part of the tether from p to β(k+1), (β(k+1), β′(k+1)), the part of WF ′ from

β′(k+1) to p′, and the line segment from p′ to p is just the boundary of Rk.

Therefore, we may assume that either (i) β ′(k) = β(k) and (β(k), β(k+1)) is strictly

between (β(k), β(k−1)) and (β(k), γ) in clockwise order around β(k); or (ii) β ′(k) 6= β(k). In

both cases, we show that the first point after β(k) on (w, x) at which (w, x) intersects the

boundary of Rk is not on (β(k), β′(k)).

In case (i), the interior of (β(k), β(k+1)) is in the interior of F ′. Edge (w, x), which

contains (β(k), β(k+1)), intersects the interior of Rk and, thus, it intersects the boundary

of Rk in at least one point other than β(k). Let λ be the first point after β(k) on (w, x)

at which (w, x) intersects the boundary of Rk. Since β(k) = β′(k), λ is not on (β(k), β′(k)).

See k = 3 in Figure 7.16 for an example of this case, where β ′(3) = β(3) and the network

edge (w, x) containing (β(3), β(4)) intersects the boundary of R3 at another point β ′(4).

An example of case (ii) is k = 4 in Figure 7.17. From Proposition 7.7, β (k) is a

virtual node. From Proposition 7.6, the clockwise angle around β(k) from (β(k), β(k−1)) to

(β(k), β(k+1)) is less than 180◦. Thus, edge (w, x) intersects the network edge containing

(β(k−1), β(k)) at β(k) and is not parallel to that edge. By the definition of β ′(k), (β(k), β′(k))

is contained in that network edge. Therefore, (w, x) does not intersect any point on

(β(k), β′(k)) except β(k). Furthermore, since β(k) 6= β′(k), β(k) is not on WF ′ . Then, by

Lemma 7.5 (b), the interior of (β(k), β(k+1)) is in the interior of F ′. So (w, x) intersects the

interior of Rk and, thus, it intersects the boundary of Rk in at least one point other than

β(k). Let λ be the first point after β(k) on (w, x) at which (w, x) intersects the boundary



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 93
PSfrag replacements

p′β(1) = p

β(2) = β′(2)

β(3) = β′(3)
w

γ

β(4)

x = β ′(4)

packet.destination

R3 −R4

R4

unstable edge

stable edge

tether

Figure 7.16: Example for the proof of Proposition 7.11 where k = 3



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 94
PSfrag replacements

p′β(1) = p

β(2)

β(3)

β(4)

w

xβ(5) = β′(5)
β′(4)

packet.destination

R4 −R5

R5

unstable edge

stable edge

tether

Figure 7.17: Example for the proof of Proposition 7.11 where k = 4



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 95

of Rk. Since (w, x) and (β(k), β′(k)) intersect only at β(k), λ is not on (β(k), β′(k)).

Thus, in both cases, λ is not on (β(k), β′(k)) and the interior of (β(k), λ) is in the interior

of Rk. Thus, (β(k), λ) divides Rk into two subregions. The boundary of Rk consists of

the part of tether from p to β(k), (β(k), β′(k)), the part of WF ′ from β ′(k) to p′, and the

line segment from p′ to p. We next show that λ can only be on the part of WF ′ after

β′(k) up to and including p′.

λ cannot be on the part of the tether from p to β(k). Otherwise, (β(k), λ) forms

a counterclockwise cycle with the tether and (w, x) would have been ignored by the

algorithm. This contradicts the fact that (β(k), β(k+1)) is contained in (w, x).

Suppose λ is on the interior of the line segment from p′ to p. Because the interior of

(β(k), λ) is in the interior of Rk and β′(k+1) is on WF ′ , λ is between β(k) and β′(k+1) on

edge (w, x). Since λ is closer to the destination than p is, and, by definition, no point

on (β(k), β(k+1)) is such a point, λ is not on (β(k), β(k+1)). Since (β(k+1), β′(k+1)) does not

intersect the interior of the line segment between p and p′, λ is not on (β(k+1), β′(k+1)).

This is a contradiction.

Therefore, λ can only be on the part of WF ′ after β ′(k) up to and including p′. Since

the interior of (β(k), β(k+1)) is in the interior of F ′, β(k+1) is between β(k) and λ. Thus,

by the definition of β ′(k+1), β′(k+1) = λ. Hence, β ′(k+1) 6= β′(k), β′(k+1) is on the part of

WF ′ from β ′(k) to p′, and (β(k), β′(k+1)) divides Rk into two subregions. The part of the

tether from p to β(k+1), (β(k+1), β′(k+1)), the part of WF ′ from β ′(k+1) to p′, and the line

segment from p′ to p is the boundary of one subregion of Rk divided by (β(k), β′(k+1)).

Therefore, the proposition is true.

Proposition 7.12. Let k ≥ 2. If the tether has length at least k, and if (β (i), β′(i)) does

not intersect the interior of the line segment between p and p′, for all 2 ≤ i ≤ k, then the

part of the tether from p to β(k), (β(k), β′(k)), the part of WF ′ from β ′(k) to p′, and the line

segment from p′ to p form a closed curve that is the boundary of a region whose interior

is entirely contained in the interior of F ′.
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Proof. By induction on k using Proposition 7.10 and 7.11.

Lemma 7.13. Let k ≥ 2. If the tether has length at least k + 1, and if (β(i), β′(i)) does

not intersect the interior of the line segment between p and p′, for all 2 ≤ i ≤ k +1, then

β′(k+1) 6= β′(k) and β ′(k+1) is on the part of WF ′ from β ′(k) to p′.

Proof. By Proposition 7.12, the part of the tether from p to β(k), (β(k), β′(k)), the part

of WF ′ from β ′(k) to p′, and the line segment from p′ to p form a closed curve that is the

boundary of a region whose interior is entirely contained in the interior of F ′. Then, the

lemma follows from Proposition 7.11.

In the following proposition, we show a property of the tether when (β (k), β′(k)) inter-

sects the interior of the line segment between p and p′ for the first time as k increases.

Proposition 7.14. If the tether has length at least k0, and β(k0) is the first node in the

tether such that (β(k0), β′(k0)) intersects the interior of the line segment between p and

p′, then the part of the tether from p to β(k0−1), (β(k0−1), λ), and the line segment from

λ to p form a closed curve that is the boundary of a region whose interior is entirely

contained in the interior of F ′, where λ is the intersection point of (β(k0), β′(k0)) and the

line segment between p and p′.

Proof. Suppose the tether has length at least k0, and β(k0) is the first node in the tether

such that (β(k0), β′(k0)) intersects the interior of the line segment between p and p′. Fig-

ure 7.18 is an example for k0 = 8.

From Proposition 7.9, if β(2) exists, (β(2), β′(2)) does not intersect the interior of the

line segment between p and p′. Therefore, k0 ≥ 3. Thus, from Proposition 7.12 with

k = k0 − 1, the part of the tether from p to β(k0−1), (β(k0−1), β′(k0−1)), the part of WF ′

from β ′(k0−1) to p′, and the line segment from p′ to p form a closed curve that is the

boundary of a region whose interior is entirely contained in the interior of F ′. Let Rk0−1

denote this region.
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Since (β(k0), β′(k0)) is contained in (β(k0−1), β′(k0)), and (β(k0), β′(k0)) intersects the in-

terior of the line segment between p and p′ at λ, (β(k0−1), λ) divides Rk0−1 into two

subregions. The part of the tether from p to β(k0−1), (β(k0−1), λ), and the line segment

from λ to p is the boundary of one subregion of Rk−1. Hence, the proposition holds.

The next proposition shows the properties of the next edge in the tether if the preced-

ing edge (β(k), β′(k)) intersects the interior of the line segment between p and p′. Notice

that in the assumptions in this proposition, (β(k), β′(k)) may not be the first edge that

intersects the interior of the line segment between p and p′, which is different from the

assumption in Proposition 7.14.

Proposition 7.15. If the tether has length at least k + 1, if (β(k), β′(k)) intersects the

interior of the line segment between p and p′ at λ, and if the part of the tether from

p to β(k−1), (β(k−1), λ), and the line segment from λ to p form a closed curve that is

the boundary of a region whose interior is entirely contained in the interior of F ′, then

(β(k+1), β′(k+1)) intersects the interior of the line segment between p and λ at some point

λ′, and the part of the tether from p to β(k), (β(k), λ′), and the line segment from λ′ to p

form a closed curve that is the boundary of a region whose interior is entirely contained

in the interior of F ′.

Proof. Let Rk denote the region whose boundary is the part of the tether from p to

β(k−1), (β(k−1), λ), and the line segment from λ to p.

Since β(k) exists, all points on (β(k−1), β(k)) are farther from packet.destination than

p is. Furthermore, since all point on the interior of the line segment between p and p′

are closer to packet.destination than p is, (β(k−1), β(k)) does not intersect the interior of

the line segment between p and p′. If β ′(k) = β(k) then (β(k), β′(k)) does not intersect

the interior of the line segment between p and p′, contrary to the assumption. Thus,

β′(k) 6= β(k), so by Proposition 7.7, β(k) is a virtual node.

Let (w, x) denote packet.next edge(k). Edge (w, x) intersects (β(k−1), λ) at β(k) and



Chapter 7. Routing in Edge Dynamic Quasi Unit Disk Graphs 99

β(k+1) lies on (β(k), x). From Proposition 7.6, the clockwise angle around β(k) from

(β(k), β(k−1)) to (β(k), β(k+1)) is less than 180◦. Therefore, (w, x) intersects the interior of

Rk.

The boundary of Rk consists of the part of the tether from p to β(k−1), (β(k−1), λ),

and the line segment from λ to p. Edge (w, x) intersects (β(k−1), λ) at β(k), so it must

intersect the boundary of Rk at another point that is not on (β(k−1), λ). Edge (w, x)

cannot intersect the part of the tether from p to β(k−1), because otherwise it forms a

counterclockwise cycle with the tether and would have been ignored by the algorithm.

Thus, (w, x) intersects the interior of the line segment from λ to p. Let λ′ be the point at

which they intersect. (β(k), λ′) divides Rk into two subregions. The part of the tether from

p to β(k), (β(k), λ′), and the line segment from λ′ to p is the boundary of one subregion

of Rk.

Since β(k+1) exists, all points on (β(k), β(k+1)) must be farther from packet.destination

than p is. Thus, as above, β ′(k+1) 6= β(k+1) and (β(k+1), β′(k+1)) intersects the interior of

the line segment between p and λ at λ′. Therefore, the proposition holds.

Using Proposition 7.14 and 7.15, we can prove that if β(k0) is the first node in the

tether such that (β(k0), β′(k0)) intersects the interior of the line segment between p and

p′, then (β(k), β′(k)) intersects the interior of the line segment between p and p′, for all

k ≥ k0 if β(k) exists.

Proposition 7.16. If the tether has length at least k ≥ k0 and β(k0) is the first node in

the tether such that (β(k0), β′(k0)) intersects the interior of the line segment between p and

p′, then (β(k), β′(k)) intersects the interior of the line segment between p and p′ at some

point λ, and the part of the tether from p to β(k−1), (β(k−1), λ), and the line segment from

λ to p form a closed curve that is the boundary of a region whose interior is entirely

contained in the interior of F ′.

Proof. By induction on k ≥ k0.
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Base case k = k0: follows from Proposition 7.14.

Induction step Assume the proposition is true for some k ≥ k0 and consider the

case for k + 1. Assume the tether has length at least k + 1. By the induction hypothesis,

(β(k), β′(k)) intersects the interior of the line segment between p and p′ at some point λ,

and the part of the tether from p to β(k−1), (β(k−1), λ), and the line segment from λ to p

form a closed curve that is the boundary of a region whose interior is entirely contained in

the interior of F ′. Then, it follows from Proposition 7.15 that (β(k+1), β′(k+1)) intersects

the interior of the line segment between p and λ at some point λ′, and the part of the

tether from p to β(k), (β(k), λ′), and the line segment from λ′ to p form a closed curve

that is the boundary of a region whose interior is entirely contained in the interior of F ′.

Notice that, since λ is on the interior of the line segment between p and p′, and λ′ is on

the interior of the line segment between p and λ, it follows that λ′ is on the interior of

the line segment between p and p′. Therefore the proposition holds for k + 1.

Combining Proposition 7.16 and 7.15 gives the following result.

Corollary 7.17. If the tether has length at least k + 1 > k0 and β(k0) is the first node in

the tether such that (β(k0), β′(k0)) intersects the interior of the line segment between p and

p′, then (β(k), β′(k)) intersects the interior of the line segment between p and p′ at some

point λ and (β(k+1), β′(k+1)) intersects the interior of the line segment between p and λ.

Lemma 7.13 implies that as the tether grows, if (β(k), β′(k)) does not intersect the

interior of the line segment between p and p′, then the length of the part of WF ′ from

β′(k) to p′ decreases. Note that β ′(k) is a real or virtual node. Since there are a finite

number of real and virtual nodes on WF ′ , eventually, for some k, either the destination

is reached, (β(k−1), β(k)) contains a point closer to the destination (and thus the traversal

switches to the next virtual face), or β(k) exists and (β(k), β′(k)) intersects the interior of

the line segment between p and p′.

If β(k0) is the first node in the tether such that (β(k0), β′(k0)) intersects the interior
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of the line segment between p and p′, and the tether has length at least k + 1 > k0,

then Corollary 7.17 implies that (β(k+1), β′(k+1)) intersects the interior of the line segment

between p and λk, where λk is the point at which (β(k), β′(k)) and the line segment between

p and p′ intersect. Since there are only a finite number of network edges intersecting the

line segment between p and λk0 , there exists k′ ≥ k0 such that either the destination is

reached or (β(k′), β(k′+1)) contains a point closer to the destination (and thus the traversal

switches to the next virtual face). This proves that message delivery is guaranteed.

Theorem 7.18. Under Condition 7.1 and 7.2, Virtual-Face-Traversal-With-Tether guar-

antees message delivery in edge dynamic quasi unit disk graphs with ε ≥ 1√
2
.



Chapter 8

Some Results on Restricted Mobile

Quasi Unit Disk Graphs

In this chapter, we present some results from our study on restricted mobile quasi unit

disk graphs. First, we consider a special mobile quasi unit disk graph in which nodes do

not move far away from their central locations and describe how to apply the Virtual-

Face-Traversal-With-Tether protocol for routing in such a graph. Then, we consider more

general mobile quasi unit disk graphs and discuss the difficulties in applying Virtual-Face-

Traversal-With-Tether in such graphs. We study what kind of changes in the mobile

graphs may cause problems for face routing. Finally, under the assumptions that the

destination node is stationary and the speed of the movement of nodes is limited, we

prove several properties of the graphs and conjecture that a slight variant of Virtual-

Face-Traversal-With-Tether works correctly under these assumptions.

8.1 Routing in a Restricted Mobile Quasi Unit Disk

Graph

In this section, we discuss an application of the Virtual-Face-Traversal-With-Tether pro-

tocol in a restricted mobile wireless ad-hoc network where each node may move only

102
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within a small region around a central location.

Let G be a mobile quasi unit disk graph with parameter ε whose nodes each have a

central location and may move only within a disk of radius δ around its central location.

In this discussion, we consider the case where δ is small compared to the transmission

range. Recall that the connectivity model of a mobile quasi unit disk graph is the same

as for quasi unit disk graphs. If the distance between the central locations of two nodes is

greater than 1+2δ, then the closest distance between them is greater than 1, so they are

never connected by an edge. If the distance between the central locations of two nodes

is less than or equal to ε− 2δ, then the maximum distance between them is less than or

equal to ε, so they are always connected by an edge. If the distance between the central

locations of two nodes is greater than ε− 2δ and at most 1 + 2δ, these two nodes may or

may not be connected by an edge as they move around.

Given such a mobile quasi unit disk graph G, we construct an edge dynamic quasi unit

disk graph G′ with parameter (ε−2δ)/(1+2δ) as follows: For each node in G with central

location (x, y), there is a corresponding node in G′ at location (x/(1 + 2δ), y/(1 + 2δ))

and, at each point in time, there is an edge between two nodes in G′ if and only if there

is an edge between the corresponding nodes in G.

If the distance between two nodes in G′ is greater than 1, then the distance between

the central locations of the corresponding nodes in G is greater than 1 + 2δ, so they are

never neighbors; if their distance in G′ is at most (ε − 2δ)/(1 + 2δ), then the distance

between their central locations in G is at most ε−2δ, and thus they are always neighbors.

Therefore, if (ε − 2δ)/(1 + 2δ) ≥ 1/
√

2 or, equivalently, δ ≤ (
√

2ε − 1)/(2(
√

2 + 1)),

we can apply Virtual-Face-Traversal-With-Tether on G′ to do routing in G. Note that

to apply Virtual-Face-Traversal-With-Tether on G′, nodes in G should use the scaled

coordinates of their central locations instead of their current locations in the computation.

This may be done by having nodes broadcasting their scaled central locations rather than

current locations to their neighbors. Because the edge sets of G′ and G are the same, a
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route found in G′ works in G as well.

Figure 8.1 shows the ranges of δ and ε for which Virtual-Face-Traversal-With-Tether

guarantees message delivery in G. For example, if ε = 1, then δ ≤ (
√

2 − 1)/(2(
√

2 +

1)) ≈ 0.086, i.e., about 8.6% of the transmission range. According to the IEEE 802.11

standards, a typical transmission range of current wireless devices is about 100 meters.

In this case, δ ≈ 0.086 means that the mobile nodes may move only within a disk of

radius about 8.6 ≈ 100δ meters. As ε decreases, the maximum value of δ also decreases.

So, using this approach to guarantee message delivery, the mobile wireless network is

quite restricted. One possible example of such a network is a collection of users in a

residential area where each user has a laptop or handheld wireless device and may move

within its own house. Another example is a wireless sensor network for a smart home,

where sensors are embedded into furniture and appliances [2].

There are techniques using long-range antennas to increase the wireless transmission

range from 100 meters to several kilometers. If such techniques are applied, a more

realistic application could be a sensor network for tracking the locations of patients and

doctors in a hospital.
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8.2 Towards More General Mobile Quasi Unit Disk

Graphs

Now we consider more general cases of mobile quasi unit disk graphs with ε ≥ 1√
2

where

nodes are not constrained to remain near their central locations. We first identify some

problems that can arise when the Virtual-Face-Traversal-With-Tether protocol is applied

directly on such graphs. For routing to a stationary destination node, we prove that these

problems cannot arise if we limit the speed at which nodes travel and use a slight variant

of Virtual-Face-Traversal-With-Tether. We conjecture that this variant of Virtual-Face-

Traversal-With-Tether works correctly in this restricted setting.

8.2.1 Problems caused by node movements

Node movements in mobile quasi unit disk graphs can cause changes to the graph that

are much more complicated than that in edge dynamic quasi unit disk graphs. These

changes cause difficulties for a routing protocol. First of all, in a general mobile quasi unit

disk graph, the destination node may move during the routing process. Nodes forwarding

a packet need to obtain the up-to-date location of the destination node if the destination

node moves to a different location. How to keep track of the location of the destination

node is a challenging problem.

Even if the destination node is stationary, problems can arise if other nodes move

around during the routing process. In the following, we describe some problems that

may arise when we apply the Virtual-Face-Traversal-With-Tether protocol to route a

packet to a stationary destination node in mobile quasi unit disk graphs.

A problem may arise if, when a packet traverses the boundary of a face, the whole

face moves farther from the destination. If all the points on the boundary of the face

become farther away from the destination than the starting point is at the beginning of

the traversal, then, Virtual-Face-Traversal-With-Tether will not switch to the next face,
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and the packet returns to the starting point of the current face.

A face may change when a packet is travelling along its boundary. This happens if

a new edge cuts through the face, an edge on the boundary of the face disappears, or

a node moves across the boundary of the face. New edges and disappearing edges also

occur in edge dynamic quasi unit disk graphs and these changes can be handled by the

techniques in Virtual-Face-Traversal-With-Tether.

Problems can arise when nodes move across the boundary of the face. Consider

the example in Figure 8.2. A packet is sent from node s to node d at time t0. Due
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Figure 8.2: Example when Virtual-Face-Traversal-With-Tether cannot make progress

to the movements of nodes w and x, the graph has changed by the time t1 at which

the packet arrives at node v. In Virtual-Face-Traversal-With-Tether, the packet keeps

track of the path it has followed. Edge (v, w) crosses an edge, (a, b), in that path. In

Virtual-Face-Traversal-With-Tether, node v will send the packet back to node u, since a

counterclockwise cycle is formed. However, as the packet continues to travel, the graph

is restored to its original configuration. At time t2, the packet returns to node s. In
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this example, a is the only neighbor of s, so the same path is followed repeatedly. Thus,

an adversary can prevent Virtual-Face-Traversal-With-Tether from making progress by

repeatedly moving nodes w and x.

Notice that for the packet to be delivered to d, it must eventually be forwarded to

node w. Even if a protocol did forward the packet to node w at time t1, the right-hand

rule implies that the packet would be forwarded to node q, beginning of the traversal of

face F ′′. If the packet reaches b at time t2, then it will, again, continue back to node s.

8.2.2 Limiting the speed of nodes

In the following, we restrict to the case where the destination node is located at a fixed

location. For example, in many applications of wireless sensor networks, there is a sta-

tionary sink node in the network that acts as a data center, which collects information

generated at sensor nodes that may move around [2, 63, 4].

Assumption 8.1. The destination node is stationary.

In the example in Figure 8.2, two edges (a, b) and (v, w), that were far away from

each other at time t0 intersect at time t1. These edges are far away from each other in

the sense that no endpoint of (a, b) can communicate directly with either endpoint of

(v, w). The changes in Figure 8.2 are caused by nodes w and x moving a long distance

during the traversal of the face. If nodes cannot move too far during the traversal, such

changes will not occur.

If nodes do not move too fast, then during the traversal of a face, the graph does not

change dramatically. In this case, we conjecture that the Virtual-Face-Traversal-With-

Tether protocol guarantees message delivery. Specifically, we bound the distance nodes

can travel during the traversal of one face.

Assumption 8.2. Nodes may move at most distance µ = 1
2

√

ε2 − 1
4

during the traversal

of one face.
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Note that 1/4 ≤ µ ≤
√

3/4 for 1/
√

2 ≤ ε ≤ 1. With current technology, this is

a reasonable assumption for a wireless mobile network. According to the IEEE 802.11

standards, at a typical transmission rate of 1 Mbit/sec, the link delay of a packet of

length 512 bytes, typical for 802.11 packets, is 4 milliseconds. The transmission range

of current wireless devices is about 100 meters. If the speed of mobile nodes is at most,

say, 120 km/hour, typical for vehicles on a highway, the time for a node to move 1/4 of

the transmission range is about 0.75 second. This is long enough for a packet to travel

more than 150 hops.

All of the applications mentioned at the end of Section 8.1 could be implemented in

this setting. Another example is a wireless sensor network deployed on vehicles to monitor

traffic. Sensors embedded in cars can interact with each other and send information to

fixed roadside data centers, where the data is processed to provide services such as

traffic control. Yet another possible example is a wireless sensor network for tracking the

movements of animals [2, 3].

Under Assumption 8.2, we have the following lemma.

Lemma 8.1. During the traversal of a face, if node w moves across edge (u, v), then

node w is a neighbor of either u or v at the start of the traversal.

Proof. Suppose node w is not a neighbor of u nor a neighbor of v at the start of the

traversal of a face. As illustrated in Figure 8.3, at the start of the traversal, node w is

located outside the two circles with radius ε centered at u and v. Let a be one of the

two intersections of the two circles, and let l, l ≤ 1, be the length of edge (u, v). The

distance from a to edge (u, v) is
√

ε2 − l2

4
≥

√

ε2 − 1
4

= 2µ.

During the traversal of the face, nodes u and v can move at most distance µ, so all

points on edge (u, v) are within the shaded area in Figure 8.3. The distance from a to

the shaded area is
√

ε2 − l2

4
−µ ≥ µ. Since all points, including w, that are outside both

circles are farther from the shaded area than a, and w can move at most distance µ during
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the traversal, it cannot reach the shaded area and hence cannot cross edge (u, v).

Thus, if edge (v, w) does not intersect edge (a, b), and neither a nor b is directly

connected to v or w, then edges (v, w) and (a, b) cannot intersect each other during

the traversal of one face. For example, if edges (v, w) and (a, b) do not intersect at the

beginning of the traversal of a face, the subgraph induced by {a, b, v, w} is depicted in

Figure 8.4 (a) or Figure 8.4 (b). During the traversal of the face, the induced graph may

change from (a) to (b), or from (b) to (c), but not from (a) to (c). Hence the changes in

Figure 8.2 cannot happen under Assumption 8.2.
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Figure 8.4: Changes of two edges (a, b) and (v, w)

Assumption 8.2 also provides a bound on the distance a face can move while it is

being traversed. Using the following lemma, we show that if the starting point p of a face

is the closest point to the destination among all paths known by a nearby node, then the

distance from the face to the destination throughout the traversal of the face is less than

the distance between p and the destination at the beginning of the traversal.

Lemma 8.2. Let p be the starting point of the traversal of a virtual face F of a connected

graph, and let edge (u, v) be a real edge that contains point p. Suppose that, at the start of

the traversal, |pv| ≤ |pu|, l is the distance from p to the destination node d, and |p′d| ≥ l

for all points p′ on paths of at most two hops starting from v. Then, throughout the

traversal of F , the distance from F to d is less than l.

Proof. Consider the location of nodes at the start of the traversal. Since |p′d| ≥ l for all

points p′ on paths of at most two hops starting from v, it follows that p is the closest

point to node d on edge (u, v) and d is not a neighbor of v. Thus, in our model, |vd| > ε.
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Let C2µ
v be the circle centered at node v with radius 2µ =

√

ε2 − 1
4
. Since ε ≥ 1/

√
2,

2µ ≥ 1/2. Let m be the midpoint of (u, v). Then, |pv| ≤ |mv| ≤ 1/2 ≤ 2µ, because

|pv| ≤ |pu| and |uv| ≤ 1. Thus, p is inside or on the boundary of the circle C2µ
v . Since

|vd| > ε > 2µ, it follows that d is outside the circle C2µ
v . Let C

|pd|
d be the circle centered

at node d with radius |pd|. Since p is the closest point to node d on edge (u, v) and

|pv| ≤ |pu|, either p = v or edge (u, v) is perpendicular to pd, the line segment between

p and d.

Figure 8.5 shows an example of the special case where p = v, Figure 8.6 illustrates

the geometry of a general case where p is between v and m, and Figure 8.7 is a special

case where ε = 1/
√

2, 2µ = 1/2 = |pv|, and |vd| = 1/
√

2 + ξ for some ξ << 1.
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Let A be the area in the intersection of C2µ
v and C

|pd|
d , including the arc on C2µ

v and

excluding the arc on C
|pd|
d and their intersection points, shown as the shaded area in the

figures. We prove that A and F have a non-empty intersection by considering two cases:

|pv| < 2µ and |pv| = 2µ.

If |pv| < 2µ, then p is inside C2µ
v and, thus, A is not empty. Figure 8.5 and Figure 8.6
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are examples of this case. Let q be the intersection point of the line segment pd and C2µ
v .

Since p is inside C2µ
v and q is on the boundary of C2µ

v , the interior of pq is inside C2µ
v .

Also, since pq is part of a radius of C
|pd|
d , the interior of pq is inside C

|pd|
d . Therefore, the

interior of pq is inside A. From the definition of face routing, F is intersected by an initial

part of the line segment pd with non-zero length. Thus, the interior of pq intersects F .

Therefore, A intersects F .

Otherwise, |pv| = 2µ. In this case, p is on the boundary of C2µ
v . Since 2µ ≥ 1/2 ≥ |pv|,

it follows that 2µ = 1/2 = |pv| and ε = 1/
√

2. Since |uv| ≤ 1 and |pv| ≤ |pu|, it follows

that |uv| = 1 and p is the midpoint of (u, v). Figure 8.7 is an example of this case.

Since pd is perpendicular to (u, v), it follows by the Pythagorean theorem that |vd|2 =

|vp|2 + |pd|2. Since |vd| > ε = 1/
√

2 > 1/2 = |pv|, we have |pd| > 0. Thus, (2µ+ |pd|)2 =

(|vp| + |pd|)2 > |vp|2 + |pd|2 = |vd|2. Hence 2µ + |pd| > |vd| and the interior of the

intersection A of the circles C2µ
v and C

|pd|
d is non-empty.

Let e′ be the first virtual edge in the counterclockwise direction around p starting

from pd, and let e be the real edge that contains e′. From the definition of face routing,

e′ is on the boundary of F . If e′ overlaps pd, then p is the closest point to v on edge e

and the distance from e to v is 1/2. At least one of the endpoints of e is at most distance

ε from v: otherwise the length of e is greater than 2
√

ε2 − (1
2
)2 = 1, which is not true.

Therefore, at least one endpoint of e is a neighbor of v, and e is on a path of two hops

starting from v. Hence |p′d| ≥ l for all points p′ on edge e. Because e′ overlaps pd, it

contains a point p′ that is closer to d than p is, i.e. |p′d| < l. This is a contradiction.

Therefore, e′ does not overlap pd.

The counterclockwise angle from pd to e′ around p is greater than 0. Since pd is

tangent to C2µ
v at p, a segment of the arc on C2µ

v starting at p that is on the boundary

of A is contained in the interior of that angle. Therefore, A intersects F .

In both cases, A intersects F . If some point on the boundary of F belongs to A, let

(x, y) be a real edge that contains such a point where |xv| ≤ |yv|. See Figure 8.5 for an
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example. From the definition of A, the distance from every point in A to v is at most

2µ, and the distance from every point in A to d is smaller than l. Therefore, the distance

from edge (x, y) to v is at most 2µ, and the distance from edge (x, y) to d is less than l.

Let z be the point on edge (x, y) that is closest to v. If z = x, then |xv| ≤ 2µ < ε.

Otherwise, vz is perpendicular to (x, y). Since |xv| ≤ |yv| and |xy| ≤ 1, |xz| ≤ 1/2.

Hence |xv| =
√

|vz|2 + |xz|2 ≤
√

(2µ)2 + (1
2
)2 = ε. In both cases, node x is a neighbor

of v.

Thus, edge (x, y) is on a two-hop path from v, and |p′d| ≥ l for all points p′ on edge

(x, y). This contradicts the fact that the distance from edge (x, y) to d is less than l.

Hence, A is entirely contained in the interior of F .

Since the graph is connected, node d cannot be in the interior of F . Thus, the

boundary of F contains a point that is closer to d than all points in A. Since nodes

can move at most distance µ during the traversal of F , and the destination node d is

stationary, the distance from F to d can increase by at most µ during the traversal. Thus,

it suffices to show that A contains a point whose distance to d is at most l − µ.

Let a and b be the intersection point of the line segment vd with C2µ
v and C

|pd|
d ,

respectively. Point a belongs to A. We will show that the distance |ad| from a to d is

less than l − µ.

Let ∆ = l − |ad|. Then, ∆ = l − (|vd| − |va|) = |pd| − |vd|+ |va| =
√

|vd|2 − |pv|2 −

|vd| + 2µ, since p = v or pd is perpendicular to pv. As |pv| decreases, ∆ increases, and

as |vd| increases, ∆ does not decrease, because

∂(
√

|vd|2 − |pv|2 − |vd|+ 2µ)

∂|vd| =
|vd|

√

|vd|2 − |pv|2
− 1 ≥ 0.

Since |vd| > ε and |pv| ≤ 1/2, we obtain ∆ ≥
√

ε2 − (1
2
)2 − ε + 2µ = 2

√

ε2 − 1
4
− ε.

Since ε ≥ 1/
√

2, ε2 ≥ 1
2

> 9
20

, so ε2 − 1
4

> (2ε
3
)2. Hence 3

2

√

ε2 − 1
4

> ε, and thus

l − |ad| = ∆ ≥ 2

√

ε2 − 1

4
− ε >

1

2

√

ε2 − 1

4
= µ.
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Therefore, |ad| < l − µ.

If the conditions in Lemma 8.2 are satisfied, then during the traversal, the boundary

of the next virtual face cannot move farther from the destination than the starting point

was at the start of the traversal. Therefore, during the traversal, we can always find a

new starting point. A slight modification of Virtual-Face-Traversal-With-Tether tries to

ensure that the conditions are satisfied before starting to traverse the next virtual face:

After a new starting point is determined, let the real node that is closer to the starting

point check whether it sees any point on a two-hop path from it that is closer to the

destination than the starting point is. If so, forward the packet towards that point and

use that point as a new starting point. Otherwise, the packet starts to traverse the next

virtual face. In this case, from Lemma 8.2, we know that the boundary of the current

virtual face contains a point that remains closer to the destination than the starting point

was at the start of the traversal.

We conjecture that this variant of Virtual-Face-Traversal-With-Tether works correctly

in mobile quasi unit disk graphs with ε ≥ 1√
2

under conditions 7.1, 7.2, 8.1, and 8.2. To

prove this, we need to show that this algorithm works correctly for all possible changes

to the graph during the routing process. The challenges are to characterize the possi-

ble changes to the graph and to find some invariants that are useful for the proof of

correctness.



Chapter 9

Conclusions and Future Work

In this thesis, we presented our research on extending face routing to more general mod-

els of wireless ad-hoc networks. In order to investigate the extendibility of face routing,

we developed a series of models with increasing generality. One important part of our

research is to find appropriate models through which we can better understand the diffi-

culties of routing problems in more realistic network graphs than unit disk graphs. The

graph models we considered gradually incorporate aspects of real networks, which en-

abled us to identify different types of problems, to gain an understanding of the capability

and limitations of face routing, and to find techniques to extend the original face routing

protocols.

We developed techniques that extend and generalize the face routing approach so

that it can be applied directly on general non-planar network graphs, without separately

constructing a plane routing subgraph. Our techniques also extend face routing to net-

work graphs with unstable links that may change during the routing process. Using these

techniques, we developed face routing protocols without the constraints suffered by the

face routing protocols in the literature.

Face routing does not always work in a general non-static graph. For example, in

my M.Sc. thesis, examples were given where face routing cannot deliver a packet, even

116
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if the nodes are stationary. We are interested in identifying conditions under which face

routing can guarantee message delivery. Therefore, in our research, we focus on designing

deterministic algorithms and providing theoretical proofs for guaranteed message delivery

in each graph model. These results are important for applications where guaranteeing

message delivery is critical.

There are a few interesting problems we would like to investigate further. First of all,

we would like to prove that the variant of Virtual-Face-Traversal-With-Tether discussed

at the end of Chapter 8 guarantees message delivery under conditions 7.1, 7.2, 8.1, and

8.2. Alternatively, if this is not the case, we would like to find additional constraints

under which message delivery is guaranteed, or to modify the protocol further to handle

the counterexamples.

Our results in Section 8.2 assumed that the destination node is stationary. With a

mobile destination node, the routing problem becomes even more difficult. It is possible

that face routing could be combined with an efficient location update scheme to guarantee

message delivery in such networks. One example is the Last Encounter Routing scheme

analyzed in [26]: a source node forwards a packet to the last known location of the

destination node, which was its location at some time in the past. During routing, if a

more up-to-date location of the destination is learned, then the packet is diverted to this

new destination.

Another direction for future work is to investigate face routing in graphs embedded

in other kinds of surfaces or in high-dimensional spaces. For example, Fraser [15] studies

face routing algorithms for static graphs embedded in the torus. Durocher et al. [13] study

the problem for static graphs embedded in 3-dimensional Euclidean space by projecting

the graph onto a 2-dimensional plane. They consider static graphs embedded in 3-

dimensional Euclidean space where two nodes are neighbors if and only if their distance

is at most 1. They show that if nodes are contained within a slab of thickness 1/
√

2,

routing can be done by projecting the graph onto a plane parallel to the slab and applying
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a face routing protocol for quasi unit disk graphs on the resulting graph, which is a quasi

unit disk graph with ε = 1/
√

2.

Durocher et al. also consider a restricted class of routing algorithms, called k-local

algorithms, in which routing decisions are based only on the source and destination nodes,

the k-hop neighborhood, and the previous node on the path. Notice that face routing

algorithms are not k-local, because they need information about the starting point of

the current face traversal. They prove that, for every ε < 1√
2

and every k ≥ 1, no k-

local routing algorithm guarantees message delivery in all quasi unit disk graphs with

parameter ε. It remains open whether this is also true for face routing.

Although face routing protocols guarantee message delivery in static networks, the

length of a path computed by them could be significantly longer than the shortest path

between the source and the destination in the network. Since the face routing protocols

in the literature use a subgraph of the network as the routing graph, the length of the

shortest path between the source and the destination may increase in the routing graph.

Experiments have been performed to evaluate the performance of a variety of face routing

protocols and the protocols that combine face routing with greedy routing [7, 31, 40, 37].

The length of the paths computed by those protocols are compared with the length of

the shortest path between the source and the destination in the original network graphs.

Our virtual face routing protocols are applied directly on the network graphs. It would

also be interesting to perform the same experiments for our virtual face routing protocols

to evaluate their performance.

In this thesis, we did not try to minimize the length of the route. The techniques used

by GOAFR+ [37] to do this can also be applied to our protocols. In addition, because a

virtual plane graph may contain many small faces, we may be able to exploit the two-hop

or three-hop neighbor information to skip some small faces or to switch to a new face

earlier.

For edge dynamic and mobile quasi unit disk graphs, our protocols guarantee mes-
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sage delivery assuming the existence of a stable spanning subgraph during the traversal

of each face. Experimental study may help us understand how the parameters of the

networks, such as the frequency of link failure, the speed of movement, and the speed

of communication, affect the performance of our protocols and the likelihood that the

conditions for guaranteeing message delivery are satisfied.
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