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Abstract. Keyword spotting is a detection task consisting in discover-
ing the presence of specific spoken words in unconstrained speech. The
majority of keyword spotting systems are based on generative hidden
Markov models and lack discriminative capabilities. However, discrimi-
native keyword spotting systems are based on the estimation of a poste-
riori probabilities at the frame-level, hence they make use of information
from short time spans. This paper presents a discriminative keyword
spotting system based on recurrent neural networks only, that uses in-
formation from long time spans to estimate keyword probabilities. In a
keyword spotting task in a large database of unconstrained speech where
an HMM-based speech recogniser achieves a word accuracy of only 65 %,
the system achieved a keyword spotting accuracy of 84.5 %.

1 Introduction

Keyword spotting is a detection task consisting in discovering the presence of
specific spoken words in (typically unconstrained) speech signals. Applications
of this technology include audio indexing, detection of command words in inter-
active environments and spoken password verification. In general, the technology
is applied to domains in which a full speech recogniser is cumbersome to develop
and unnecessary, partly because less than perfect detection rates are still very
satisfactory.

Nonetheless, the same mathematical framework used in the majority of
speech recognisers forms the basis for keyword spotting systems too. The typical
keyword spotting system consists of a set of hidden Markov models (HMM),
one for each keyword plus one or more filler models [1]. The filler models char-
acterize non-keyword events in the speech signal, such as other spoken words,
background noises and silence. The approach is generative and finds the most
likely sequence of models that produces the observations. The output of the sys-
tem is post-processed before deciding on the presence or absence of keywords
in the utterance [2]. First, the confidence on the predictions is measured. This
is typically done by computing the ratio of likelihoods between keyword model
hypotheses and filler model hypotheses. Finally, a threshold level is applied to
the confidence measure in order to achieve a compromise between the number
of true and false positives predicted by the system.



In general, a discriminative approach to keyword spotting is more suitable,
as it allows discriminating between keyword and non-keyword events, and also
among similar keywords. Besides this, posterior probabilities can directly be used
as an effective confidence measure. Recently, discriminative keyword spotting
systems have been explored in various papers. The most extended approach [3–
5] consists in using artificial neural networks (ANN) in the framework of hybrid
ANN/HMM systems [6, 7]. In this setup, frame-level posteriors are estimated
with, typically, a multi-layer perceptron (MLP). These local posterior estimates
are accumulated over the duration of a segment and the result normalised by
the length of the segment. Another approach to discriminative keyword spotting
uses kernel machines and large margin classifiers with a set of feature functions
consistent with hybrid ANN/HMM models [8].

The approach presented in this paper attempts to model full keywords in the
sequence data stream, while previous discriminative keyword spotting systems
are based on sub-word units (phones). It is based on recurrent neural networks
(RNN) and the connectionist temporal classification (CTC) algorithm. The al-
gorithm [9, 10] is a general framework for labelling unsegmented sequential data
with artificial neural networks. The proposed system uses information over long
time spans for providing non-local estimates of the a posteriori probability of
the presence of either a keyword or non-keyword events in the speech signal.

There is a plethora of different keyword spotting systems, often tailored to
meet the requirements of particular tasks, and little consensus to define bench-
mark tasks [11]. We have opted to tackle a realistic keyword spotting task in a
large database of spontaneous and unconstrained speech where an HMM-based
speech recogniser achieves a word accuracy of only 65 %.

The remainder of the paper is structured as follows. Section 2 provides a
description of the system. Keyword spotting experiments are presented in sec-
tion 3 and the results are shown in section 3.3. Section 4 offers a discussion on
differences between previous approaches and the one presented in this paper,
and gives directions for future work. Final conclusions are given in section 5.

2 Method

2.1 Outline

The network architecture selected for the keyword spotting task is the bi-
directional long short-term memory recurrent neural network (BLSTM), which
has shown good performance in a series of speech tasks [12, 13]. The network is
trained with the connectionist temporal classification (CTC) algorithm [9, 10].

The input to the recurrent network is the data sequence of a speech utterance.
The network has a soft-max output layer with as many output units as keywords
have to be detected, plus one output unit associated with non-keyword events.
The target for the training algorithm is a list (which may be empty) of keywords
in the order in which they appear in the input speech utterance. No further
constraints are applied to the system, e.g. the segmentation of the speech signal
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Fig. 1. Discriminant keyword spotting with BLSTM and CTC. When a keyword is
detected the ANN produces a spike-like output with higher probability than the non-
keyword output (dashed line).

is not required and various pronunciation variants of the same keyword can
appear in the data set.

Once the network has been trained, its output will, typically, consist in a
series of spikes corresponding to keyword events that have been detected in the
input, and separated by long periods of activation of the non-keyword output
unit (see figure 1). The activation of every output unit at every time step cor-
responds to the probability of detecting a particular keyword (or non-keyword
event) at a particular time step.

2.2 BLSTM

The long short-term memory (LSTM) [14, 15] is an RNN architecture designed
to deal with long time-dependencies and addresses the problem of the back-
propagated error either blowing up or decaying exponentially for long time lags
in conventional RNNs. The hidden layer of LSTM networks consists of a set
of recurrently connected blocks containing one or more memory cells and three
multiplicative units (the input, output and forget gates), which allow writing,
reading or resetting the information in the memory cell.

Bi-directional RNNs [16] address in an elegant way the need for delayed
decisions in some sequential tasks such as speech processing. Data sequences are
presented forwards and backwards to two separate recurrent networks connected
to the same output layer. Therefore, for every point in a given sequence, the
network has complete sequential information about (some of) the points before
and after it. An implementation of the bi-directional LSTM (BLSTM) can be
found in [12].



2.3 CTC

Connectionist temporal classification (CTC) [9, 10] is an algorithm to label un-
segmented sequential data with RNNs. The basic idea behind the algorithm is
to interpret the network outputs as a probability distribution over all possible
label sequences, conditioned on the input data sequence. Given this distribution,
an objective function can be derived that directly maximises the probabilities of
the correct labellings. Since the objective function is differentiable, the network
can be trained with standard back-propagation through time. The algorithm re-
quires that the network outputs at different times are conditionally independent
given the internal state of the network. This requirement is met as long as there
are no feedback connections from the output layer to itself or to the network.

3 Experiments

3.1 Material

The experiments were carried out on a set of dialogues in German from the Verb-
mobil database. The dialogues deal with the scheduling of date appointments
for meetings. The database consist in spontaneous and unconstrained speech,
with long silences and noises. The results provided along with the database for
a baseline automatic speech recogniser give an approximate idea of the difficulty
of processing this database: the HMM-based speech recogniser achieved a word
accuracy of 65 %3.

The material used in the experiments corresponds to version 2.3 (March 2004)
of the Verbmobil database (except for CD-ROM number 53.1 of the training set
which was not available). It includes separate training, validation and test sets.
The database is speaker independent. Speakers were distributed equally across
sexes in all sets and every speaker appears in only one of the sets. The training
set includes 748 speakers and 23975 dialogue turns for a total of 45.6 hours of
speech. The validation set includes 48 speakers and 1222 dialogue turns for a
total of 2.9 hours of speech. The test set includes 46 speakers and 1223 dialogue
turns for a total of 2.5 hours of speech.

Due to the nature of the dialogues included in the database, we decided to use
dates and places as keywords for the detection task. This ensures a relatively
good coverage of keywords in the training, validation and test data sets. The
twelve keywords chosen were:

april, august, donnerstag, februar, frankfurt, freitag, hannover, januar,
juli, juni, mittwoch, montag

Note that the database include various pronunciation variants of some of these
keywords (e.g. “montag” can end either with a /g/ or with a /k/). In addition,

3 We tried training an HMM-based keyword spotting system, with as few constraints as
those required by our system, for this keyword spotting task but it did not converge.



several keywords appear as sub-words, e.g. in plural form such as “montags” or
as part of another word such as “ostermontag” (Easter Monday).

Therefore, the orthographic transcription provided along with the database
was examined for the presence in every utterance of one or various of the twelve
keywords selected. Once a keyword was found, the begin and end times for the
keyword were saved for evaluating the performance of the keyword spotting
system at a later stage. These times were provided along with the database
and correspond to the segmentation given by an automatic speech recognition
system.

This procedure gave a total of 10469 keywords on the training set with an
average of 1.7 % keywords per non-empty utterance (73.6 % of the utterances
did not have any keyword); 663 keywords on the validation set with an average
of 1.7 % keywords per non-empty utterance (68.7 % of the utterances did not
have any keyword); and 620 keywords on the test set with an average of 1.8 %
keywords per non-empty utterance (71.1 % of the utterances did not have any
keyword).

The list of keywords (which may be empty) in the order in which they ap-
pear in every utterance, forms the target sequence for the network’s training
algorithm.

Finally, the speech data was characterised as a sequence of vectors of thirty
nine coefficients, consisting of twelve Mel-frequency cepstral coefficients (MFCC)
plus energy and first and second order derivatives of these magnitudes. The coef-
ficients were computed every 10 ms over 25 ms-long windows. First, a Hamming
window was applied, secondly, a mel-frequency filter bank of 26 channels was
computed and, finally, MFCC coefficients were calculated with a 0.97 preempha-
sis coefficient. The input data was normalised to have zero mean and standard
deviation one.

3.2 Setup

The CTC-BLSTM network was trained with the input sequences and keyword
targets from section 3.1. The network has, therefore, 39 input units and 13 units
in the output soft-max layer. Both the forward and backward hidden recurrent
layers consist of 128 LSTM memory blocks with one memory cell per block,
peephole connections and forget gates. The input and output cell activation
functions are a hyperbolic tangent. The gates use a logistic sigmoid function
in the range [0,1]. The input layer is fully connected to the hidden layer and
the hidden layer is fully connected to itself and to the output layer. The total
number of weights in the network is 176141.

Training was carried out with a learning rate of 10−4 and a momentum
coefficient of 0.9. Weights were initialised randomly in the range [-0.1, 0.1]. In
addition, Gaussian noise with a standard deviation of 0.5 was added to the
inputs during training to improve generalization. The network was tested every
five epochs on the validation set and training finished once the error on the
validation set stopped decreasing.



3.3 Results

The typical sequence of outputs for a trained network can be seen in figure 1. It
consists in a sequence of spikes associated with detected keywords and separated
by long periods during which the non-keyword output unit is the most active.
The CTC algorithm allows the network to keep any output active for as long
as necessary or as little as one time step only. To evaluate the results, at every
time step the output with the highest activation is chosen. If an output is the
most active for a period of time, we have chosen the highest activation during
that period as the probability of detecting the keyword, and the time at which
the highest activation occurs as the location of the detected keyword. It is easy
to avoid this step, though, by a simple modification to the CTC algorithm that
constraints keyword outputs to last for one time step only.

Spikes whose identity match a keyword in the speech signal and that appear
within the boundaries of the keyword in the speech signal are counted as true
positives, unless more than one spike is output in that period, in which case only
one of them counts as a true positive and the rest count as false positives. Those
spikes that appear out of the boundaries of the keyword in the speech signal are
considered false positives. The accuracy of the system is given by the number
of true positives minus the number of false positives divided by the number of
keywords in the data set.

Four networks were trained on the same task with different initial random
weights. Average accuracy over four runs was 84.5 % with a standard error of
1.2 %. The average probability of true positives was 0.98 with a standard error of
0.004. The average probability of false positives was 0.80 with an standard error
of 0.01. As expected, given the discriminative nature of the algorithm, setting
a posteriori a threshold level in between this probability levels did not increase
performance significantly (84.8 % accuracy, with an standard error of 1.2 %).
Table 1 shows the number of true and false positives by keyword for the network
with the best performance. As shown in the table, the system discriminates
almost perfectly between similar keywords such as “juni” and “juli”.

As of now, the CTC training algorithm does not constrain the spikes to ap-
pear within the begin and end times of the speech pattern. The algorithm trains
the network to detect the correct sequence of keywords and in the right order
for any utterance in the training set. Probably this makes training slower, but it
seems that it is not necessary to add this constraint to the training algorithm in
order to achieve good performance: when the results are evaluated without using
the segmentation, the average accuracy over four runs is 86.1 % with a standard
error of 0.7 %. Of those keyword candidates appearing outside the boundaries in
the speech signal, only one was more than 0.5 s outside the reference segment.
This level of precision can be enough for tasks where high detection accuracy is
more important.

Finally, figure 2 shows, for a successful detection, the dependency of the
network output at the time when the keyword is detected with respect to the
inputs at some previous and following time steps. As can be seen, the proba-
bility of detecting the keyword depends on the inputs over a long time span



Table 1. Results by keyword for the ANN with the best performance. Accuracy is the
number of hits minus false positives divided by the actual number of keywords in the
test set. Average accuracy over four runs is 84.5 % with a standard error of 1.2 %.

Keyword # Hits # FPs # Actual % Accuracy

april 27 2 32 78.12
august 29 1 34 82.35

donnerstag 55 6 56 87.50
februar 55 1 60 90.00

frankfurt 18 0 25 72.00
freitag 40 4 45 80.00

hannover 76 5 86 82.56
januar 35 4 38 81.58

juli 53 1 56 92.86
juni 63 2 66 92.42

mittwoch 36 1 39 89.74
montag 79 3 83 91.57

Overall 566 30 620 86.45

(of about one second, or a hundred network time steps) and, for the example
shown, the dependency decreases towards the end of the keyword, which is the
least discriminative part of it.

4 Discussion and Future Work

The main difference between our approach to discriminative keyword spotting
and other discriminative systems is the capability of computing non-local poste-
riors for the keywords, i.e. the system uses information over long time spans to
compute the probability of a keyword appearing in the speech signal. In addition
to this, the a posteriori estimation of a threshold level to balance true and false
positives is not required.

The algorithm makes very few assumptions about the domain, which facili-
tates the development of systems for detection tasks. Nonetheless, if very high
precision in the location of spots is required, the system might benefit from
adding to the algorithm the constraint that keywords must be detected within
the boundaries established by the reference segmentation. However, not having
this constraint greatly simplifies the preparation of training data.

To make the system scale, one solution consists in implementing smaller net-
works. For example, one for each keyword, or one for each set of similar keywords
among which the system must discriminate. New networks can be added to the
system at any time. Under the assumptions that, for different networks, the
training data has similar characteristics and that the non-keyword output unit
is associated to a model of similar characteristics, which is reasonable, the a
posteriori probabilities given by different networks can be compared and used
to determine the presence or absence of keywords in the input data stream.
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Fig. 2. Example of network outputs dependency with respect to the inputs. The figure
shows the dependency of the output unit associated with keyword “donnerstag” at the
time step when this keyword is detected in figure 1, with respect to the network inputs
at various time steps around the detection point (indicated by an arrow at the top of
the figure). In addition, the extent (0.9 s) and location of the keyword in the speech
signal is shown at the top of the figure. As can be seen, the probability of detecting
the keyword depends on the inputs over a long time span, and decreases towards the
end of the keyword which is the least discriminative part of it: “tag” (day).

Another option to improve scalability consists in detecting sub-word units
in the signal and use these outputs as inputs for one of the existing systems
that builds keywords from sub-word units. The detection of sub-word units with
the system proposed in this paper will benefit from the same features and ease
of use described in this paper (see [9] for results on phoneme recognition with
CTC-BLSTM). Besides this, it is possible to feed the sub-word level predictions
to another CTC-BLSTM network with keyword-level outputs [10].

The choice of sub-word or word models depends on the task. In general,
sub-word units are more practical for audio indexing tasks because the system
must respond to searches for unknown keywords. In tasks such as detection of
command words and spoken password verification, it is likely that the vocabulary
is either fixed or it does not change so often that it is not possible to update the
system. Also, for safety reasons, it is in these cases in which the benefits of a
word-level discriminative keyword spotting system are most desirable. Namely,
the capability of decreasing confusion among similar keywords by discriminating
among them and between non-keyword and keyword events.

5 Conclusion

We have presented a word-level discriminative keyword spotting system that
is easy to develop and use, fast and accurate. The probability of detecting a
keyword is computed using information from long time spans. Those probabili-
ties can be read directly from the outputs of a recurrent neural network. An a



posteriori estimate of an acceptance threshold level is not required. Finally, the
system makes few assumptions about the domain: only the input speech signal
and a list of keywords (which may be empty) in the order in which they occur
in the signal are necessary to train the system. The algorithm is general and
can be used for any task requiring the detection of patterns in sequence data.
In a keyword spotting task in a large database of unconstrained speech where
an HMM-based speech recogniser achieves a word accuracy of only 65 %, the
system achieved a keyword spotting accuracy of 84.5 %.
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