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Abstract. We describe a new algorithm for robot localization, efficient
both in terms of memory and processing time. It transforms a stream of
laser range sensor data into a probabilistic calculation of the robot’s po-
sition, using a bidirectional Long Short-Term Memory (LSTM) recurrent
neural network (RNN) to learn the structure of the environment and to
answer queries such as: in which room is the robot? To achieve this, the
RNN builds an implicit map of the environment.

1 Introduction

Traditional approaches to Simultaneous Localization and Mapping (SLAM) with
distance sensor data are typically based on occupancy grids — that is, the robot
builds an explicit map of its environment as it moves around [1, 2, 3, 4]. These
algorithms have to cope with uncertainty in sensor and odometry data and need
to store huge amounts of data for later refinement and correction, making them
expensive in memory and computation time. To reduce the amount of data
in high resolution grid-based mapping some researchers convert the map into a
topological map [5, 6]. However, these approaches need to build first the explicit
map before transforming it, which is very resource-consuming.

Our approach uses a neural network to localize the robot, trained with se-
quences of input data from distance sensors. Unlike other localization and map-
ping algorithms, our method does not generate an explicit map of the environ-
ment and does not calculate Euclidean coordinates. Instead, the RNN stores
an implicit map, which matches robot positions with topological labels. Topo-
logical labels or positions, like “in the kitchen” or “next to the copy machine”
represent a more natural description of the environment, which is also very
memory-efficient. Unlike other neural network based localization methods we
do not use artificial landmarks [7, 8] or operate in a limited environment [9].

In addition, the absence of a fixed map makes it easier to cope with problems
such as moving obstacles, which hide parts of the environment, or the temporal
absence of marks, like room doors hidden by obstacles.

In order to maximize the temporal context available for localization, a bidi-
rectional Long-Short Term Memory architecture is used [10, 11] for the neural
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network. The learning approach is robust against sensor data noise and the
“kidnapping” problem: Taking the robot from its current position and placing
it somewhere else without giving it any information about the replacement.

The paper continues with section 2 with a description of the neural network.
Section 3 describes our simulation environment and experiments, while section
4 presents and discusses the results and finally, section 5 concludes the paper.

2 Learning Method

We use a neural network to learn the mapping between sensor input data and
robot locations. We use 2D laser range distance sensors, the most frequently
used sensors for localization since they have an adequate resolution and a low
data rate per time-step.

We use the distance information directly as input data for the neural network.
The outputs of the network are interpreted as the probabilities of the robot being
in specific labelled areas in the environment — in other words they are used to
classify the robot’s positions.

In order to extend the time dependency range of contextual information
when making these classifications, we use the Long Short-Term Memory (LSTM)
recurrent network architecture [10]. LSTM is able to bridge longer time lags than
conventional RNNs due to its use of special memory cells, whose activation is
protected by multiplicative gates [12].

Many sequence classification tasks have been shown to benefit from bidirec-
tional context, i.e. information about the future as well as the past of a particular
point in the input sequence. Bidirectional recurrent neural networks (BRNNs)
are an elegant method utilizing such context into RNNs [13]. BRNNs have
yielded significantly improved results in several sequence classification tasks,
such as protein structure prediction. In this paper we combine both techniques
and use bidirectional LSTM. This combination of network structures has previ-
ously been successfully applied to speech recognition tasks [11].

The network input consists only of the information from the laser range scan-
ner; no odometry information, orientation information or motor commands are
included. The input data is normalized to have mean 0 and standard deviation
1. See Figure 1(b) for an illustration of the range measurements.

The network has an input layer size of 36 (one input for each direction of the
laser scanner) and an output layer size of 16 (one output for each room or area in
the environment). It has two hidden layers, one for the forward and one for the
backward subnet of the bidirectional architecture, each of them containing 50
LSTM blocks. All cells in the blocks have logistic sigmoid activation functions.
Standard gradient descent with momentum is used for the supervised training.

3 Experiments

We used an in-house 3D simulation system to simulate the motion of a robot in
a house environment. It contains 15 rooms or room-like areas, and its total size
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Fig. 1: (a) The used simulated house environment, with the robot (black circle),
obstacles (dots) and rooms labels (numbers). (b) Illustration of the robot laser
range measurements for its position in (a). The lengths of the radial lines rep-
resent the measured distance to the nearest opaque object. The input is shown
without (top) and with noise and obstacles (bottom).

is 10.5 m by 18.9 m. The rooms have various shapes and numbers of doors, and
some of them are reachable only from one other room (see Figure 1(a)). There
are many cycles in the environment, which is in general one of the hardest prob-
lems to handle for traditional SLAM algorithms, especially when no odometry
information is available.

The simulated robot, whose design was derived from the Robertino1 platform,
has a circular base with a diameter of 40 cm. The robot was equipped with a
holonomic drive, a laser range scanner with an angular resolution of 10 degrees
and a maximum range of 5m.

Clearly, placing obstacles in such an environment will substantially influence
the robot’s laser range measurements. In order to test the robustness of our
system to such influences, we carried out experiments with up to 20 obstacles
(slowly moving cones with a diameter of approximately 40 cm) in various loca-
tions around the house. Figure 1(a) shows a top-down view of a typical scene
with 20 obstacles and Figure 1(b) shows the sensor measurements of the robot
in this scene with and without noise (see below) and obstacles.

We conducted 6 experiments in various scenarios by manually steering the
robot in the house. Each sequence was between 69 and 1 793 time-steps long
and contained visits to 2 to 37 rooms. For the first four experiments we varied
the noise in the sensor data readings, but did not include any obstacles. The
last two experiments had a fixed noise ratio and contained various number of
obstacles. For these experiments, the training set contained sequences both with
and without obstacles, while the test set contained only sequences with a fixed
number of obstacles (10 for experiment five and 20 for experiment six). For
each sequence, the robot and the obstacles (if present) were given random initial
positions. Details about the number of recorded sequences are given in Table 1.

In order to expand the size of the training set, and thus improve general-
1www.openrobertino.de



Nr Sequences Time steps Noise Obstacles Quality
Train Test Train Test

1 120 19 34 867 0.0 0 95.2 % 81.8 %
2 120 19 34 867 0.2 0 92.8 % 80.1 %
3 120 19 34 867 0.5 0 91.7 % 82.7 %
4 120 19 34 867 1.0 0 92.5 % 80.1 %
5 270 20 70 002 0.2 10 93.2 % 82.8 %
6 320 20 106 333 0.2 20 73.1 % 55.4 %

Table 1: For each experiment the number of sequences and time steps for training
and testing the network are given. The noise column gives the standard deviation
of the simulated laser range sensor noise. The two rightmost columns show
the percentage of correct classifications for the training set and the test set
respectively.
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Fig. 2: An episode from the test set with 20 obstacles. The target values (top)
and the output of the network (bottom) are shown. The labels indicate the
classified room number.

ization, we rotated the robot’s sensor data 35 times (from 10 to 350 degrees)
and appended the rotated data to the original training set. Since the robot’s
input was radially symmetrical, these rotations only had the effect of altering the
robot’s initial direction, and did not change its perception of the environment.

The learning rate was fixed to 10−5 with momentum 0.9 for all experiments.
The training time lay between 14 and 54 epochs. Gaussian noise with standard
deviation 1 was added to the data in each time-step to prevent over-fitting.

4 Results and Discussion

The two rightmost columns in Table 1 show the performance of the learning pro-
cess in relation to noise and number of obstacles. The accuracy of the algorithm
is not greatly influenced by noisy sensor data. The proportion of falsely classified
rooms is around 20% for all noise levels with a standard deviation between 0
and 1 of the normalized data. The algorithm also appears to be robust to small
numbers of obstacles.

To explore the essence of the algorithm in detail, we show additionally one
of the robot trails in Figure 2. A trained robot moves from room 4 to 1, back to
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Fig. 3: In this episode, the robot was kidnapped at time-step 180 and set in-
stantaniously from room 6 to room 12 (top graph). The algorithm can handle
the sudden event quite well (lower graph). Resetting the network at kidnapping
time improves the classification (middle graph).

4, has a look into room 2, and finishes in room 6. The uncertainty in the begin-
ning of the sequence occurs while the robot stands still in the first time-steps.
The correct room is detected immediately after the robot starts moving. Neural
networks are in general capable of sequence prediction as well as sequence classi-
fication, so it should be possible for the network to learn which label transitions
are possible in the given environment. However, in the example in Figure 2 the
network predicts (albeit with low probability) impossible transitions from room
4 to room 9 and then to room 1 in the first part of the trail.

Various experiments have shown that the algorithm is also robust against
the “kidnapping problem” (Figure 3). The robot was kidnapped at time-step
180 replaced from room 6 to room 12. The algorithm can handle the sudden
event quite well. After a short time the robot was able to correctly localize itself.
Reset of the network at the time of kidnapping clearly favors the classification,
but is not needed, as seen in the lowest graph of Figure 3.

5 Conclusion and Future Work

We presented a new robot localization method very different from previously
described techniques. Instead of using traditional memory-wasteful occupancy
grids or building an explicit Euclidean map, we use a tiny neural network to
learn a simple, implicit memory-efficient topological map. Topological maps
have several advantages compared to Euclidean maps, e.g. easier path planning,
memory efficiency, and a natural interpretation of the environment. Further-
more, our approach is based on distance sensor readings and does not rely on
artificial landmarks, odometry or other additional sensor data.



We implemented our approach and carried out experiments on a simulated
environment, with complexity not less than that of real-world applications. We
achieved results of over 80% accuracy, demonstrating both the feasibility and
easy applicability of the algorithm. In the future we plan to extend our method
to different robot tasks, such as path planning and navigation. With some
additional research, we feel that the RNN approach will be competitive with
state-of-the-art localization algorithms. Additionally, we plan to apply the lo-
calization method to real laser range sensors data in real habitat environments.
This will allow comparison to other well known SLAM methods.
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