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Introduction

Deep recurrent neural networks were recently shown to
give state-of-the-art performance in phoneme recognition
on the TIMIT database [1]. However these results relied
on end-to-end training methods that are difficult to integrate
into existing speech recognition systems. In particular, it is
not straightforward to combine such methods with the pro-
nunciation dictionaries and language models required for
large vocabulary recognition. This work investigates the
use of deep recurrent nets as acoustic classifiers in a tra-
ditional hybrid HMM-neural network system. The goal was
to provide a straightforward alternative to deep feedforward
nets that can be plugged into the standard large-vocabulary
framework.

Network Architecture

A basic recurrent neural network (RNN) is defined by the
following computation graph:

Figure 1: Recurrent Neural Network

One problem with basic RNNs is that they are only able to
make use of previous context. In speech recognition, where
whole utterances are transcribed at once, it is clearly ben-
eficial to exploit future context as well. Bidirectional RNNs
(BRNNs) [2] do this by processing the data in both direc-
tions with two separate hidden layers, which are then fed
forwards to the same output layer.

Figure 2: Bidirectional Recurrent Neural Network

A more subtle failing of RNNs is that they have trouble ac-
cessing long-range context. The problem is that the infor-
mation stored in the hidden layer tends to decay over time
as it repeatedly loops through the recurrent connections,
and is also prone to being overwritten by new information
arriving from the inputs. The Long Short-Term Memory net-
work architecture (LSTM; [3]) addresses these issues by
adding multiplicative gating units that allow the network to
control the flow of information in and out of the hidden layer.

Figure 3: Long Short-term Memory Cell

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence
of one layer forming the input sequence for the next.

Figure 4: Deep Recurrent Neural Network

Putting all these ideas together gives deep bidirectional
Long Short-Term Memory (DBLSTM), the architecture used
in this paper:

Figure 5: Deep Bidirectional Long Short-Term Memory

Network Training

Network training followed the standard HMM-neural net-
work hybrid approach [4]: Frame-level state targets were
provided by a forced alignment from a GMM-HMM system,
and the network was then trained to classify the states
using a softmax output layer. However there were two
main differences from the way feedforward nets are usually
trained:

• There was no context window on either side of the acous-
tic frame being classified (RNNs don’t need this because
they can transmit context through their internal state).
• The weight updates were calculated for entire utterances

at once (reflecting the fact that every output may de-
pend on every input). This differs from feedforward
nets, where the updates are typically performed on mini-
batches drawn randomly from the whole training set. One
consequence is that RNN training is harder to parallelise.

Gaussian weight noise [5] was used to regularise the net-
works to prevent overfitting. We have found this method
more effective for RNNs than better-known regularisers
such as dropout or L1 or L2 weight penalties.

TIMIT Experiments

The first set of experiments were carried out on the TIMIT
speech corpus. The aim was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1].

Table 1: TIMIT Results with End-To-End Training.

METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2: TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

Wall Street Journal Experiments

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. The purpose was to
gauge the suitability of hybrid DBLSTM-HMM for large vo-
cabulary speech recognition, and in particular to compare
with existing deep network and GMM benchmarks.

Table 3: WSJ Results.

SYSTEM WER FER CE
DBLSTM 11.7 30.0 1.15
DBLSTM (NOISE) 12.0 28.2 1.12
DNN 12.3 44.6 1.68
SGMM [6] 13.1 – –

Discussion

The experiments suggest that hybrid HMM-DBLSTM sys-
tems are as effective for phoneme recognition as end-to-
end RNN training. They also suggest that DBLSTM can
deliver a substantial advantage over deep feedforward net-
works as a frame-level acoustic classifier. However it is less
clear whether improvements in classification are likely to
lead to a significant improvement in word-level accuracy for
large vocabulary systems. Indeed, we found that regularis-
ing DBLSTM led to a decrease in frame error rate and an
increase in word error rate on the WSJ data. This highlights
one of the fundamental problems with hybrid systems: the
frame-level distribution the network is trained to optimise
is significantly different from the sequence level distribution
that is implicitly defined by the decoding lattice.

An obvious direction for future work would be to explore the
use of full-sequence, large-vocabulary training for DBLSTM
networks, either by extending the existing end-to-end meth-
ods for RNNs to incorporate pronunciation dictionaries and
language models, or by adapting the discriminative, full-
sequence methods currently in use for hybrid systems [7].
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